Some considerations on optimisation-based control in robotics Many problems, some ideas towards solutions

Vincent Padois - vincent.padois@inria.fr

Senior research scientist Inria Bordeaux Sud-Ouest, Auctus

> R4 2021, Talence - 2021/05/10

Interactive robots do not exist for real

Basic locomotion and manipulation skills

Introduction

Interactive robots do not exist for real

... vs Laboratory science and technology

Advanced control but no living bodies around

How many (trully) collaborative robots have you seen in the industry $? \end{tabular}$

Why is it so?

The world is dynamic, complex and hard to predict (impact in 6s)

Outline of the presentation

Introduction

2 Limitations of existing control approaches

Real-life examples

Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety

(Reactive) Optimal control

Ideally, solve reactively ...

$$\min_{t_0, t_f, x(t), u(t)} \underbrace{J_b(t_0, t_f, x(t_0), x(t_f))}_{boundary objective function} + \underbrace{\int_{t_0}^{t_f} J_i(s, x(s), u(s)) ds}_{integral objective function}$$

subject to :

- Dynamics : $\dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t))$
- Path constraints : $h(t, \mathbf{x}(t), \mathbf{u}(t)) \leq \mathbf{0}$
- State constraints : $x_{I}(t) \leq x(t) \leq x_{u}(t)$
- Control bounds : $u_l(t) \le u(t) \le u_u(t)$

(Reactive) Optimal control

Ideally, solve reactively ...

$$\min_{t_0, t_f, \mathbf{x}(t), \mathbf{u}(t)} \underbrace{J_b(t_0, t_f, \mathbf{x}(t_0), \mathbf{x}(t_f))}_{boundary \ objective \ function} + \underbrace{\int_{t_0}^{t_f} J_i(s, \mathbf{x}(s), u(s)) ds}_{integral \ objective \ function}$$

o + .

... but in practice

- infinite dimensional problem
- can generally not be solved, even once
- \hookrightarrow transformed in a finite dimensional problem : non linear program / constrained parameter optimization
- $\,\hookrightarrow\,$ hard to solve, cannot be solved reactively

In dynamic environments, $\mathbf{x}(t) = {\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)}$ \hookrightarrow requires **perception** for the state of the environment $\mathbf{x}_{env}(t)$ \hookrightarrow no control over $\mathbf{x}_{env}(t) \rightarrow$ reactive planning needed

In dynamic environments, $\mathbf{x}(t) = {\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)}$ \hookrightarrow requires **perception** for the state of the environment $\mathbf{x}_{env}(t)$ \hookrightarrow no control over $\mathbf{x}_{env}(t) \rightarrow$ reactive planning needed

 \hookrightarrow compute an optimal control input trajectory $\tau(t)$ at each control instant given

In dynamic environments, $\mathbf{x}(t) = {\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)}$ \hookrightarrow requires **perception** for the state of the environment $\mathbf{x}_{env}(t)$ \hookrightarrow no control over $\mathbf{x}_{env}(t) \rightarrow$ reactive planning needed

 \hookrightarrow compute an optimal control input trajectory au(t) at each control instant given

• Control objectives : $\{\boldsymbol{H}_{1,f}, \ldots, \boldsymbol{H}_{n_o,f}\}$

In dynamic environments, $\mathbf{x}(t) = {\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)}$ \hookrightarrow requires **perception** for the state of the environment $\mathbf{x}_{env}(t)$ \hookrightarrow no control over $\mathbf{x}_{env}(t) \rightarrow$ reactive planning needed

 \hookrightarrow compute an optimal control input trajectory $\tau(t)$ at each control instant given

- ► Control objectives : { $H_{1,f}, \ldots, H_{n_o,f}$ }
- (Non-linear) Dynamics of the system :
 - $\blacktriangleright \quad \boldsymbol{M}(\boldsymbol{q})\dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} \ (+\sum_{i}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}})$
 - $\mathbf{v}_i = \mathbf{J}(\mathbf{q})\dot{\mathbf{v}} \quad \forall i \in [1, n_o] \text{ and } \mathbf{v}_i := \dot{\mathbf{H}}_i$

In dynamic environments, $\mathbf{x}(t) = \{\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)\}$ \hookrightarrow requires **perception** for the state of the environment $\mathbf{x}_{env}(t)$ \hookrightarrow no control over $\mathbf{x}_{env}(t) \rightarrow$ reactive planning needed

 \hookrightarrow compute an optimal control input trajectory au(t) at each control instant given

- Control objectives : $\{\boldsymbol{H}_{1,f}, \ldots, \boldsymbol{H}_{n_o,f}\}$
- (Non-linear) Dynamics of the system :
 - $M(\boldsymbol{q})\dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} (+\sum_{i}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}})$

•
$$\mathbf{v}_i = \mathbf{J}(\mathbf{q})\dot{\mathbf{v}} \ \forall i \in [1, n_o] \text{ and } \mathbf{v}_i := \mathbf{H}_i$$

Constraints :

$$\begin{array}{l} \bullet \quad \tau_{1} \leq \tau \leq \tau_{u} \\ \bullet \quad \dot{\tau}_{1} \leq \dot{\tau} \leq \dot{\tau}_{u} \\ \bullet \quad q_{l} \leq q \leq q_{u} \\ \bullet \quad \dot{\nu}_{l} \leq \dot{\nu} \leq \dot{\nu}_{u} \\ \bullet \quad h(x_{env}, q) \leq 0 \\ \bullet \quad \dots \end{array}$$

 \hookrightarrow very complex and computationnally demanding control / optimization problem

Outline of the presentation

Introduction

2 Limitations of existing control approaches

Real-life examples

Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety

Historically in the industry, the problem left to robots is simplified

Static environment \rightarrow reactivity not required at the task planning level ...

- ... as constraints are met
 - offline, through planning
 - a posteriori through emergency stops or stereotypical safety zones definition

Static environment \rightarrow reactivity not required at the task planning level ...

... as constraints are met

- offline, through planning
- a posteriori through emergency stops or stereotypical safety zones definition

Yet finding a control trajectory is complex

- $\,\hookrightarrow\,$ Decouple planning and control
- ▶ Plan for q(t) or H(t)
- Perform trajectory servoing and low level-control

Static environment \rightarrow reactivity not required at the task planning level ...

... as constraints are met

- offline, through planning
- a posteriori through emergency stops or stereotypical safety zones definition

Yet finding a control trajectory is complex

- $\,\hookrightarrow\,$ Decouple planning and control
- ▶ Plan for q(t) or H(t)
- Perform trajectory servoing and low level-control

Still too complex !

- Simplification based on an underestimation of the true robot capacities
- $\hookrightarrow\,$ the industry is full of oversized and dangerous robots
- Highly expert manual tuning required
- $\,\hookrightarrow\,$ robots are not the promised versatile tools

Illustration with the Franka Emika Panda Robot

Constants

Limits in the Cartesian space are as follows:

Name	Translation	Rotation	Elbow
\dot{p}_{max}	$1.7000 \frac{m}{s}$	2.5000 md/s	2.1750 mad s
\ddot{p}_{max}	13.0000 $\frac{m}{s^2}$	25.0000 $\frac{rad}{s^2}$	10.0000 $\frac{rad}{s^2}$
\ddot{p}_{max}	$6500.0000 \frac{m}{s^3}$	12500.0000 $\frac{md}{s^3}$	5000.0000 rad s ³

Joint space limits are:

Name	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6	Joint 7	Unit
q_{max}	2.8973	1.7628	2.8973	-0.0698	2.8973	3.7525	2.8973	rad
q_{min}	-2.8973	-1.7628	-2.8973	-3.0718	-2.8973	-0.0175	-2.8973	rad
\dot{q}_{max}	2.1750	2.1750	2.1750	2.1750	2.6100	2.6100	2.6100	$\frac{rad}{s}$
\ddot{q}_{max}	15	7.5	10	12.5	15	20	20	$\frac{\text{rad}}{\text{s}^2}$
\ddot{q}_{max}	7500	3750	5000	6250	7500	10000	10000	$\frac{\text{rad}}{\text{s}^3}$
$\tau_{j_{max}}$	87	87	87	87	12	12	12	Nm
$\dot{\tau}_{j_{max}}$	1000	1000	1000	1000	1000	1000	1000	$\frac{Nm}{8}$

Illustration with the Franka Emika Panda Robot

\hookrightarrow Curse of "collaborative" robotics

- Safety in the collaboration requires small robots and controlled stops
- Small robots capabilities are small
- Underestimating the capabilities of small robots leads to "not much" capabilities
- Potentially safe robots are mostly useless

Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids walking)...

... mostly two solutions

- Sequential simplified planning problem solving from contact sequence to center of mass trajectory under balance constraints and in purely static environment (plan once)
- Stereotypical walking gaits (planned once) on flat grounds and online planar trajectory adaptation
- + Trajectory servoing and multi-task whole-body control

Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids walking)...

Difficulties

- ► Planning performed with advanced models is costly → no reactivity
- Simplified models do not account for the true capabilities of the system
- \hookrightarrow underestimation / overstimation \rightarrow manual tuning
- Humanoids can't do much in real life

Outline of the presentation

Introduction

2 Limitations of existing control approaches

Real-life examples

Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety

Outline of the presentation

Introduction

2 Limitations of existing control approaches

Real-life examples

4

Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque τ^* optimizing under constraints some objective related task $v^* = J(q)\nu$

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque τ^* optimizing under constraints some objective related task $v^* = J(q)\nu$

- Equation of motion and joint space to task space mappings : equalities \hookrightarrow can be solved using Linear Algebra
 - $\mathbf{M}(\boldsymbol{q})\dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} \left(+ \sum_{i}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}} \right)$
 - $\blacktriangleright \mathbf{v}_i = \mathbf{J}(\mathbf{q})\dot{\mathbf{v}} \quad \forall i \in [1, n_o] \text{ and } \mathbf{v}_i := \dot{\mathbf{H}}_i$

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque τ^* optimizing under constraints some objective related task $v^* = J(q)\nu$

- ► Equation of motion and joint space to task space mappings : equalities ↔ can be solved using Linear Algebra
 - $\mathbf{M}(\boldsymbol{q})\boldsymbol{\nu} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} \left(+ \sum_{i}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}} \right)$
 - $\blacktriangleright \quad \pmb{v}_i = \pmb{J}(\pmb{q}) \dot{\pmb{\nu}} \quad \forall i \in [1, n_o] \text{ and } \pmb{v}_i := \dot{\pmb{H}}_i$
- ► Standard IVK and operational space control approaches^{*} \hookrightarrow solution based on J^+ and null-space projections $\dot{\nu} = J^+(q)\nu + (I - J^+J)\dot{\nu}_0$

. *see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque τ^* optimizing under constraints some objective related task $\mathbf{v}^* = \mathbf{J}(\mathbf{q}) \mathbf{v}$

Equation of motion and joint space to task space mappings : equalities \hookrightarrow can be solved using Linear Algebra

$$\mathbf{M}(\mathbf{q})\dot{\mathbf{\nu}} + \mathbf{b}(\mathbf{q},\mathbf{\nu}) = \mathbf{S}^{T}(\mathbf{q})\mathbf{\tau} \left(+ \sum_{i}^{n_{c}} \mathbf{J}_{c_{i}}^{T}(\mathbf{q})\mathbf{f}_{c_{i}} \right)$$
$$\mathbf{v}_{i} = \mathbf{J}(\mathbf{q})\dot{\mathbf{\nu}} \quad \forall i \in [1, n_{o}] \text{ and } \mathbf{v}_{i} := \dot{\mathbf{H}}_{i}$$

- Standard IVK and operational space control approaches* \hookrightarrow solution based on J^+ and null-space projections $\dot{\nu} = J^+(q)\nu + (I - J^+J)\dot{\nu}_0$
- Some limits on the system cannot or should never be crossed : inequalities \hookrightarrow cannot be accounted for properly using Linear Algebra only

$$D(q, \nu) \mathbb{X} \leq h(q, \nu)$$

. *see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque τ^* optimizing under constraints some objective related task $v^* = J(q)\nu$

- ► Equation of motion and joint space to task space mappings : equalities ↔ can be solved using Linear Algebra
 - $\mathbf{M}(\mathbf{q})\dot{\mathbf{\nu}} + \mathbf{b}(\mathbf{q},\mathbf{\nu}) = \mathbf{S}^{T}(\mathbf{q})\boldsymbol{\tau} \left(+ \sum_{i}^{n_{c}} \mathbf{J}_{c_{i}}^{T}(\mathbf{q})\mathbf{f}_{c_{i}} \right)$ $\mathbf{v}_{i} = \mathbf{J}(\mathbf{q})\dot{\mathbf{\nu}} \quad \forall i \in [1, n_{o}] \text{ and } \mathbf{v}_{i} := \dot{\mathbf{H}}_{i}$
- Standard IVK and operational space control approaches^{*} \hookrightarrow solution based on J^+ and null-space projections $\dot{\nu} = J^+(q)\nu + (I - J^+J)\dot{\nu}_0$
- ► Some limits on the system cannot or should never be crossed : inequalities ↔ cannot be accounted for properly using Linear Algebra only

$$D(q, \nu) \mathbb{X} \leq h(q, \nu)$$

^{. *}see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

Leave your robot alone

- \blacktriangleright Methods based on ${\it J}^+$ forces constraints to be treated as tasks \rightarrow active avoidance
- QP allows to consider constraints as such \rightarrow passive avoidance

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

Leave your robot alone

- Methods based on J^+ forces constraints to be treated as tasks \rightarrow active avoidance
- ▶ QP allows to consider constraints as such \rightarrow passive avoidance

One constraints than DoFs : choose which one to consider at each time

- Methods based on J^+ use context specific heuristics to do so
- QP comes with an optimal active constraints determination algorithm

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

Leave your robot alone

- \blacktriangleright Methods based on ${\it J}^+$ forces constraints to be treated as tasks \rightarrow active avoidance
- ▶ QP allows to consider constraints as such \rightarrow passive avoidance

One constraints than DoFs : choose which one to consider at each time

- Methods based on J^+ use context specific heuristics to do so
- QP comes with an optimal active constraints determination algorithm
- Infeasibility can't be ignored
 - Methods based on J^+ can solve infeasible problems ightarrow constraints violation
 - ▶ QP can't be solved if infeasible → deal with this problem first [Rubrecht 2012, Meguenani 2017b, Del Prete 2018]

Constraints compliance as a control feature

For example :

$$\boldsymbol{\tau}_{k+1}^{*} = \underset{\boldsymbol{\tau}_{k+1}, \bar{\boldsymbol{q}}_{k+1}}{\operatorname{arg\,min}} \left\| \boldsymbol{obj} \left(\ddot{\boldsymbol{q}}_{k+1}, \ddot{\boldsymbol{x}}_{k+1}^{*} \right) \right\|_{\boldsymbol{Q}_{t}}^{2} + \epsilon \left\| \left[\begin{array}{c} \boldsymbol{\tau}_{k+1} \\ \ddot{\boldsymbol{q}}_{k+1} \end{array} \right] \right\|_{\boldsymbol{Q}_{t}}^{2}$$

such that
$$\boldsymbol{M}(\boldsymbol{q}_k)\ddot{\boldsymbol{q}}_{k+1} + \boldsymbol{b}(\boldsymbol{q}_k, \dot{\boldsymbol{q}}_k) = \boldsymbol{S}^T(\boldsymbol{q}_k)\boldsymbol{\tau}_{k+1}$$

 $\boldsymbol{\tau}_{min} \leq \boldsymbol{\tau}_{k+1} \leq \boldsymbol{\tau}_{max}$
 $\boldsymbol{q}_{min} \leq \boldsymbol{q}_{k+1} \leq \boldsymbol{q}_{max}$
 $\dot{\boldsymbol{q}}_{min} \leq \dot{\boldsymbol{q}}_{k+1} \leq \dot{\boldsymbol{q}}_{max}$
 $0 \leq \boldsymbol{d}_{k+1}^{rob,obj_j} \quad \forall j \in \{1, ..., n_{obj}\}$

$$\boldsymbol{obj}\left(\ddot{\boldsymbol{q}}_{k+1}, \ddot{\boldsymbol{x}}_{k+1}^*\right) = \underbrace{\ddot{\boldsymbol{x}}_{k+1}^{des} + PD(\boldsymbol{x}_k, \boldsymbol{x}_{k+1}^{des})}_{\ddot{\boldsymbol{x}}_{k+1}^*} - \boldsymbol{J}(\boldsymbol{q}_k) \dot{\boldsymbol{q}}_{k+1} - \dot{\boldsymbol{J}}(\boldsymbol{q}_k) \dot{\boldsymbol{q}}_k$$

п 112

н г

Constraints compliance as a control feature : the teleoperation case

- PhD thesis Sébastien Rubrecht, ANR TELEMACH, CIFRE Bouygues Construction [Rubrecht 2010, Rubrecht 2011, Rubrecht 2012]
- <u>Context</u>: Teleoperation in tunnel boring machine cutter-heads
- Static environment, interactive task definition

Constraints compliance as a control feature

- ▶ PhD work of Lucas Joseph, CIFRE GE Healthcare [Joseph 2018c]
- ▶ Dynamic environment : perception in the loop and reactive constraints adaptation

Outline of the presentation

Introduction

2 Limitations of existing control approaches

Real-life examples

4

Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety

Classically, it's considered to be related to the null-space of the Jacobian $\dot{\nu} = J^+(q)\nu + (I - J^+J)\dot{\nu}_0$ or $\tau = J^T(q)f + (I - J^TJ^{T+})\tau_0$

- Classically, it's considered to be related to the null-space of the Jacobian $\dot{\nu} = J^+(q)v + (l J^+J)\dot{\nu}_0$ or $\tau = J^T(q)f + (l J^TJ^{T+})\tau_0$
- ▶ In a QP, it does not appear explicitely. Three possibilities :
 - Write the cost function as a weighted sum of individual task constraints [Salini 2011], [Bouyarmane 2011]

$$\tau^* = \underset{\mathbb{X}}{\operatorname{arg\,min}} \qquad T(\mathbb{X}) = \sum_{i=1}^{n_o} T_i(\mathbb{X}, \boldsymbol{W}_i) + w_0 T_0 \qquad (1)$$

subject to
$$\boldsymbol{M}(\boldsymbol{q})\dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} + \sum_{i=1}^{n_{c}} \boldsymbol{J}_{c_{i}}^{\top}(\boldsymbol{q})\boldsymbol{f}_{c_{i}}$$
 (2)

$$\boldsymbol{A}(\boldsymbol{q},\boldsymbol{\nu})\mathbb{X} = \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) \tag{3}$$

$$\boldsymbol{D}(\boldsymbol{q},\boldsymbol{\nu})\mathbb{X} \leq \boldsymbol{h}(\boldsymbol{q},\boldsymbol{\nu}) \tag{4}$$

Real-life examples

- ► Classically, it's considered to be related to the null-space of the Jacobian $\dot{\nu} = J^+(q)v + (I J^+J)\dot{\nu}_0$ or $\tau = J^T(q)f + (I J^TJ^{T+})\tau_0$
- ▶ In a QP, it does not appear explicitely. Three possibilities :
 - Write the cost function as a weighted sum of individual task constraints [Salini 2011], [Bouyarmane 2011]

- ► Classically, it's considered to be related to the null-space of the Jacobian $\dot{\nu} = J^+(q)\nu + (I J^+J)\dot{\nu}_0$ or $\tau = J^T(q)f + (I J^TJ^{T+})\tau_0$
- ▶ In a QP, it does not appear explicitely. Three possibilities :
 - Write the cost function as a weighted sum of individual task constraints [Salini 2011], [Bouyarmane 2011]

Solve a cascade of n_o QPs to ensure a strict hierarchy [Kanoun 2009], [Escande 2014]

subject to
$$\boldsymbol{M}(\boldsymbol{q})\dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} + \sum_{i=1}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}}$$
 (2)

$$\boldsymbol{A}(\boldsymbol{q},\boldsymbol{\nu})\mathbb{X} = \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) \tag{3}$$

$$\boldsymbol{D}(\boldsymbol{q},\boldsymbol{\nu})\mathbb{X} \leq \boldsymbol{h}(\boldsymbol{q},\boldsymbol{\nu}) \tag{4}$$

$$T_j(\mathbb{X}) = T_j^* \quad \forall j < i \tag{5}$$

- Classically, it's considered to be related to the null-space of the Jacobian $\dot{\nu} = J^+(q)\nu + (I J^+J)\dot{\nu}_0$ or $\tau = J^T(q)f + (I J^TJ^{T+})\tau_0$
- In a QP, it does not appear explicitely. Three possibilities :
 - Write the cost function as a weighted sum of individual task constraints [Salini 2011], [Bouyarmane 2011]
 - Solve a cascade of no QPs to ensure a strict hierarchy [Kanoun 2009], [Escande 2014]
 - Solve a QP allowing the formulation and the smooth transition between both soft and strict hierarchy – Generalized Hierarchical Control [Liu 2016]

$$\tau^* = \underset{\tau, \mathbf{f}_c, \dot{\nu}'}{\operatorname{arg\,min}} \qquad T(\mathbb{X}) = \sum_{i=1}^{n_o} T_i(\tau, \mathbf{f}_c, \dot{\nu}'_i) \qquad (1)$$

subject to
$$\boldsymbol{M}(\boldsymbol{q})\boldsymbol{P}\dot{\nu}' + \boldsymbol{b}(\boldsymbol{q},\nu) = \boldsymbol{S}^{T}(\boldsymbol{q})\tau + \sum_{i=1}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}}$$
 (2)

$$\boldsymbol{A}(\boldsymbol{q},\boldsymbol{\nu})[\boldsymbol{\tau}^{T},\boldsymbol{f}_{c}^{T},\boldsymbol{P}\dot{\boldsymbol{\nu}}^{\prime T}]^{T} = \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) \tag{3}$$

$$\boldsymbol{D}(\boldsymbol{q},\boldsymbol{\nu})[\boldsymbol{\tau}^{T},\boldsymbol{f}_{c}^{T},\boldsymbol{P}\dot{\boldsymbol{\nu}}^{\prime T}]^{T} \leq \boldsymbol{h}(\boldsymbol{q},\boldsymbol{\nu}) \tag{4}$$

Priorities in Generalized Hierarchical Control [Liu 2016]

• Task deactivation $\alpha_{ii} = 0 \longrightarrow \alpha_{ii} = 1$

• Redundancy also hides in the regularization task T_0

- Redundancy also hides in the regularization task T_0
- \blacktriangleright Often treated by default \rightarrow converge towards a "good posture"

- Redundancy also hides in the regularization task T_0
- \blacktriangleright Often treated by default \rightarrow converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase

- Redundancy also hides in the regularization task T_0
- \blacktriangleright Often treated by default \rightarrow converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase
- $\,\hookrightarrow\,$ But they mostly artificially constrain the solution space

- Redundancy also hides in the regularization task T_0
- \blacktriangleright Often treated by default \rightarrow converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase
- $\,\hookrightarrow\,$ But they mostly artificially constrain the solution space
- There are some alternatives : gravity compensation, viscous friction, middle of the constraints,...

- Redundancy also hides in the regularization task T_0
- \blacktriangleright Often treated by default \rightarrow converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase
- $\,\hookrightarrow\,$ But they mostly artificially constrain the solution space
- There are some alternatives : gravity compensation, viscous friction, middle of the constraints,...

- Redundancy also hides in the regularization task T₀
- \blacktriangleright Often treated by default \rightarrow converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase
- $\,\hookrightarrow\,$ But they mostly artificially constrain the solution space
- There are some alternatives : gravity compensation, viscous friction, middle of the constraints,...

▶ Apparent mass minimization in the potential direction of interaction [Joseph 2018a]

- Apparent mass minimization in the potential direction of interaction [Joseph 2018a]
- Makes a significative difference at impact time (H2020 COVR HARRY2 project)

(a) Configuration q_1

- ► Apparent mass minimization in the potential direction of interaction [Joseph 2018a]
- Makes a significative difference at impact time (H2020 COVR HARRY2 project)

(b) Comparison of the averaged maximum peak force at impact time as a function of impact velocity and in two different configurations q_1 (blue) and q_2 (yellow). Standard deviation is plotted as a red whisker.

Real-life examples

Outline of the presentation

Introduction

2 Limitations of existing control approaches

Real-life examples

- 4

Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety

Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, will \, \operatorname{occur}$

Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, will \, \operatorname{occur}$
 - ▶ Dissipated Kinetic Energy at impact → source of danger :

$$\int_{u} F_{impact} du = E_{dissipated}$$
$$= E_{c}^{hum} + E_{c}^{rob}$$

Robot Kinetic Energy (expressed at the end-effector) :

$$E_{c,k} = \frac{1}{2} \dot{\boldsymbol{x}}_k^T \boldsymbol{\Lambda}(\boldsymbol{q}_k) \dot{\boldsymbol{x}}_k$$
 with $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$

Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, {\rm will} \, \operatorname{occur}$
- ▶ Dissipated Kinetic Energy at impact → source of danger :

$$\int_{u} F_{impact} du = E_{dissipated}$$
$$= E_{c}^{hum} + E_{c}^{rob}$$

- Robot Kinetic Energy (expressed at the end-effector) :
 - $E_{c,k} = \frac{1}{2} \dot{\boldsymbol{x}}_k^T \boldsymbol{\Lambda}(\boldsymbol{q}_k) \dot{\boldsymbol{x}}_k$ with $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$

Future Kinetic Energy : $E_{c,k+1} = E_{c,k} + \Delta E_c$

$$\Delta E_{c} = \underbrace{\left(\dot{\boldsymbol{x}}_{k}\Delta t + 0.5\ddot{\boldsymbol{x}}_{k+1}^{c}(\Delta t)^{2}\right)^{T}}_{\mathbf{F}_{k}} \quad \underbrace{\boldsymbol{\Lambda}(\boldsymbol{q}_{k})\ddot{\boldsymbol{x}}_{k+1}}_{\mathbf{F}_{k}}$$

Expected task motion

Equivalent actuation force

Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, {\rm will} \, \operatorname{occur}$
- Dissipated Kinetic Energy at impact \rightarrow source of danger :

$$\int_{u} F_{impact} du = E_{dissipated}$$
$$= E_{c}^{hum} + E_{c}^{rob}$$

- Robot Kinetic Energy (expressed at the end-effector) :
 - $E_{c,k} = \frac{1}{2} \dot{\boldsymbol{x}}_k^T \boldsymbol{\Lambda}(\boldsymbol{q}_k) \dot{\boldsymbol{x}}_k$ with $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$

► Future Kinetic Energy : $E_{c,k+1} = E_{c,k} + \Delta E_c$

$$\Delta E_{c} = \underbrace{\Delta \mathbf{x}_{k+1}^{\mathsf{T}}}_{\mathbf{A}_{k+1}} \underbrace{\mathbf{A}(\mathbf{q}_{k})\mathbf{J}(\mathbf{q}_{k})\mathbf{M}^{-1}(\mathbf{q}_{k})(\mathbf{S}^{\mathsf{T}}(\mathbf{q}_{k})\mathbf{\tau}_{k+1} - \mathbf{b}(\mathbf{q}_{k},\boldsymbol{\nu}_{k})) + \dot{\mathbf{J}}(\mathbf{q}_{k})\boldsymbol{\nu}_{k}}_{\mathbf{A}_{k}}$$

Expected task motion

Equivalent actuation force

Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, {\rm will} \, \operatorname{occur}$
- ▶ Dissipated Kinetic Energy at impact → source of danger :

$$\int_{u} F_{impact} du = E_{dissipated}$$
$$= E_{c}^{hum} + E_{c}^{rob}$$

- Robot Kinetic Energy (expressed at the end-effector) :
 - $E_{c,k} = \frac{1}{2} \dot{\boldsymbol{x}}_k^T \boldsymbol{\Lambda}(\boldsymbol{q}_k) \dot{\boldsymbol{x}}_k$ with $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$

► Future Kinetic Energy : $E_{c,k+1} = E_{c,k} + \Delta E_c$

$$\Delta E_{c} = \underbrace{\Delta \mathbf{x}_{k+1}^{T}}_{\mathbf{A}_{k+1}} \underbrace{\mathbf{A}(\mathbf{q}_{k})\mathbf{J}(\mathbf{q}_{k})\mathbf{M}^{-1}(\mathbf{q}_{k})(\mathbf{S}^{T}(\mathbf{q}_{k})\mathbf{\tau}_{k+1} - \mathbf{b}(\mathbf{q}_{k},\boldsymbol{\nu}_{k})) + \dot{\mathbf{J}}(\mathbf{q}_{k})\boldsymbol{\nu}_{k}}_{\mathbf{A}_{k}}$$

Expected task motion

Equivalent actuation force

▶ We can write a constraint on Kinetic energy at each time [ISO 2016]

. [Meguenani 2017a],[Joseph 2018b]

20 / 24

. [Meguenani 2017a],[Joseph 2018b]

Introduction

Limitiation

Real-life example

Energetic approach to safety [Joseph 2020]

- To be continued -

Limitiation

Real-life examples

References

Karim Bouvarmane and Abderrahmane Using a multi-objective controller to

synthesize simulated humanoid robot

motion with changing contact configurations.

Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators.

Andrea Del Prete

Joint Position and Velocity Bounds in Discrete-Time Acceleration/Torque Control of Robot Manipulators.

Adrien Escande, Nicolas Mansard and Hierarchical guadratic programming :

Fast online humanoid-robot motion

generation

F. Flacco, A. De Luca and O. Khatib. Prioritized multi-task motion control of

redundant robots under hard joint

constraints.

Optimization-based control approaches to humanoid balancing

In Ambarish Goswami and Prahlad

ISO TS-15066 Robots and robotic devices - Collaborative robots, 2016.

L Joseph V Padois and G Morel Experimental validation of an energy constraint for a safer collaboration with robots

L. Joseph, V. Padois and G. Morel. Towards X-ray medical imaging with robots in the open : safety without compromising performances.

An energetic approach to safety in robotic manipalation Approach to Integrate

Lucas Joseph, Joshua Pickard, Vincent Padois and David Daney Online velocity constraint adaptation for

safe and efficient human-robot workspace sharing.

Oussama Kanoun, Florent Lamiraux, Pierre-Brice Wieber, Fumio Kanehiro Eiichi Yoshida and Jean-Paul Laumond

Prioritizing linear equality and inequality systems : application to local motion planning for redundant robots.

In Proceedings of the IEEE International

A unified approach for motion and force control of robot manipulators : The operational space formulation.

Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms.

868-871. dec. 1977.

M. Liu, Y. Tan and V. Padois Generalized hierarchical control.

Autonomous Robots, vol. 40, no. 1,

N. Mansard, O. Khatib and A. Kheddar,

Unilateral Constraints in the Stack of Tasks.

A. Meguenani, V. Padois, J. Da Silva, Energy-based control for safe

Human-robot physical interactions.

In D. Kulic, G. Venture, Y. Nakamura

Anis Meguenani.

Safe control of robotic manipulators in dynamic contexts.

Theses Université Pierre et Marie Curie

S. Rubrecht, V. Padois, P. Bidaud and M. de Broissia Constraint Compliant Control for a

Redundant Manipulator in a Cluttered Environment

S. Rubrecht

Contributions to the control of constrained robo

S. Rubrecht, V. Padois, P. Bidaud, M. de Broissia and M. Da Silva Simoes. Motion safety and constraints

compatibility for multibody robots.

Autonomous Robots, vol. 32, no. 3,

J. Salini, V. Padois and P. Bidaud. Synthesis of Complex Humanoid

Whole-Body Behavior : a Focus on

Sequencing and Tasks Transitions.

B. Siciliano and J.-J.E. Slotine A general framework for managing multiple tasks in highly redundant robotic systems