## Some considerations on optimisation-based control in robotics Many problems, some ideas towards solutions

Vincent Padois - vincent.padois@inria.fr

Senior research scientist Inria Bordeaux Sud-Ouest, Auctus

> R4 2021, Talence - 2021/05/10



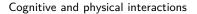


## Interactive robots do not exist for real



Basic locomotion and manipulation skills





V. Padois - 2021/05/10

2 / 39

## Interactive robots do not exist for real



... vs Laboratory science and technology

Advanced control but no living bodies around



How many (trully) collaborative robots have you seen in the industry  $? \end{tabular}$ 

## Why is it so?

## The world is dynamic, complex and hard to predict (impact in 6s)



## **Outline of the presentation**

#### Introduction

#### Limitations of existing control approaches

#### Real-life examples

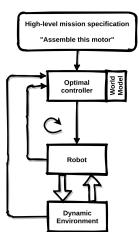
#### Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety
- Plan wise, perform wise
- Human understanding as key factor to appropriate robot design and control

#### Open source software

## (Reactive) Optimal control

#### Ideally, solve reactively ...



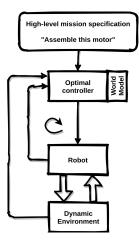
$$\min_{t_0, t_f, x(t), u(t)} \underbrace{J_b(t_0, t_f, x(t_0), x(t_f))}_{boundary \ objective \ function} + \underbrace{\int_{t_0}^{t_f} J_i(s, x(s), u(s)) ds}_{integral \ objective \ function}$$

subject to :

- Dynamics :  $\dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t))$
- Path constraints :  $h(t, x(t), u(t)) \leq 0$
- State constraints :  $x_{I}(t) \leq x(t) \leq x_{u}(t)$
- Control bounds :  $u_l(t) \le u(t) \le u_u(t)$

## (Reactive) Optimal control

#### Ideally, solve reactively ...



$$\min_{t_0, t_f, \mathbf{x}(t), \mathbf{u}(t)} \underbrace{J_b(t_0, t_f, \mathbf{x}(t_0), \mathbf{x}(t_f))}_{boundary \ objective \ function} + \underbrace{\int_{t_0}^{t_f} J_i(s, \mathbf{x}(s), \mathbf{u}(s)) ds}_{integral \ objective \ function}$$

o + .

#### ... but in practice

Limitiations

- infinite dimensional problem
- can generally not be solved, even once
- $\hookrightarrow$  transformed in a finite dimensional problem : non linear program / constrained parameter optimization
- $\,\hookrightarrow\,$  hard to solve, cannot be solved reactively

In dynamic environments,  $\mathbf{x}(t) = {\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)}$   $\hookrightarrow$  requires **perception** for the state of the environment  $\mathbf{x}_{env}(t)$  $\hookrightarrow$  no control over  $\mathbf{x}_{env}(t) \rightarrow$  reactive planning needed

In dynamic environments,  $\mathbf{x}(t) = {\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)}$   $\hookrightarrow$  requires **perception** for the state of the environment  $\mathbf{x}_{env}(t)$  $\hookrightarrow$  no control over  $\mathbf{x}_{env}(t) \rightarrow$  reactive planning needed

 $\hookrightarrow$  compute an optimal control input trajectory  $\tau(t)$  at each control instant given

In dynamic environments,  $\mathbf{x}(t) = {\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)}$   $\hookrightarrow$  requires **perception** for the state of the environment  $\mathbf{x}_{env}(t)$  $\hookrightarrow$  no control over  $\mathbf{x}_{env}(t) \rightarrow$  reactive planning needed

 $\hookrightarrow$  compute an optimal control input trajectory au(t) at each control instant given

• Control objectives :  $\{\boldsymbol{H}_{1,f}, \ldots, \boldsymbol{H}_{n_o,f}\}$ 

In dynamic environments,  $\mathbf{x}(t) = {\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)}$   $\hookrightarrow$  requires **perception** for the state of the environment  $\mathbf{x}_{env}(t)$  $\hookrightarrow$  no control over  $\mathbf{x}_{env}(t) \rightarrow$  reactive planning needed

 $\hookrightarrow$  compute an optimal control input trajectory  $\tau(t)$  at each control instant given

- Control objectives :  $\{\boldsymbol{H}_{1,f}, \ldots, \boldsymbol{H}_{n_o,f}\}$
- (Non-linear) Dynamics of the system :
  - $\blacktriangleright \quad \boldsymbol{M}(\boldsymbol{q})\dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} \ (+\sum_{i}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}})$
  - $\mathbf{v}_i = \mathbf{J}(\mathbf{q})\dot{\mathbf{v}} \quad \forall i \in [1, n_o] \text{ and } \mathbf{v}_i := \dot{\mathbf{H}}_i$

In dynamic environments,  $\mathbf{x}(t) = \{\mathbf{x}_{rob}(t), \mathbf{x}_{env}(t)\}$   $\hookrightarrow$  requires **perception** for the state of the environment  $\mathbf{x}_{env}(t)$  $\hookrightarrow$  no control over  $\mathbf{x}_{env}(t) \rightarrow$  reactive planning needed

 $\hookrightarrow$  compute an optimal control input trajectory au(t) at each control instant given

- Control objectives :  $\{\boldsymbol{H}_{1,f}, \ldots, \boldsymbol{H}_{n_o,f}\}$
- (Non-linear) Dynamics of the system :
  - $M(\boldsymbol{q})\boldsymbol{\nu} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} \left( + \sum_{i}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}} \right)$

• 
$$oldsymbol{v}_i = oldsymbol{J}(oldsymbol{q}) \dot{oldsymbol{
u}} \;\; orall i \in [1, n_o] \; ext{and} \; oldsymbol{v}_i := oldsymbol{H}$$

Constraints :

$$\begin{array}{c} \bullet \quad \tau_{l} \leq \tau \leq \tau_{u} \\ \bullet \quad \dot{\tau}_{l} \leq \dot{\tau} \leq \dot{\tau}_{u} \\ \bullet \quad q_{l} \leq q \leq q_{u} \\ \bullet \quad \dot{\nu}_{l} \leq \dot{\nu} \leq \dot{\nu}_{u} \\ \bullet \quad h(x_{env}, q) \leq 0 \\ \bullet \quad \dots \end{array}$$

 $\hookrightarrow$  very complex and computationnally demanding control / optimization problem

## **Outline of the presentation**

#### Introduction

2 Limitations of existing control approaches

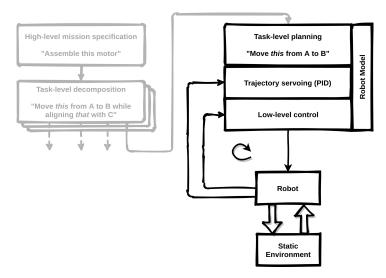
#### Real-life examples

#### Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety
- Plan wise, perform wise
- Human understanding as key factor to appropriate robot design and control

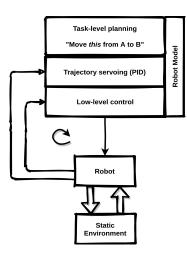
#### Open source software

#### Historically in the industry, the problem left to robots is simplified



V. Padois - 2021/05/10

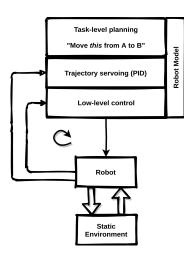
Static environment  $\rightarrow$  reactivity not required at the task planning level ...



#### ... as constraints are met

- offline, through planning
- a posteriori through emergency stops or stereotypical safety zones definition

Static environment  $\rightarrow$  reactivity not required at the task planning level ...



#### ... as constraints are met

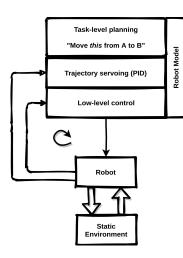
- offline, through planning
- a posteriori through emergency stops or stereotypical safety zones definition

## Yet finding a control trajectory is complex

- $\,\hookrightarrow\,$  Decouple planning and control
- ▶ Plan for q(t) or H(t)
- Perform trajectory servoing and low level-control

6 / 39

Static environment  $\rightarrow$  reactivity not required at the task planning level ...



#### ... as constraints are met

- offline, through planning
- a posteriori through emergency stops or stereotypical safety zones definition

## Yet finding a control trajectory is complex

- $\,\hookrightarrow\,$  Decouple planning and control
- ▶ Plan for q(t) or H(t)
- Perform trajectory servoing and low level-control

## Still too complex !

- Simplification based on an underestimation of the true robot capacities
- $\hookrightarrow\,$  the industry is full of oversized and dangerous robots
- Highly expert manual tuning required
- $\,\hookrightarrow\,$  robots are not the promised versatile tools

## Illustration with the Franka Emika Panda Robot

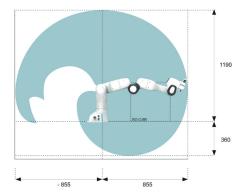
#### Constants

Limits in the Cartesian space are as follows:

| Name             | Translation               | Rotation                    | Elbow                     |  |  |
|------------------|---------------------------|-----------------------------|---------------------------|--|--|
| $\dot{p}_{max}$  | 1.7000 m/s                | 2.5000 md/s                 | 2.1750 nd/s               |  |  |
| $\ddot{p}_{max}$ | 13.0000 $\frac{m}{s^2}$   | 25.0000 rad/s <sup>2</sup>  | 10.0000 $\frac{rad}{s^2}$ |  |  |
| $\ddot{p}_{max}$ | 6500.0000 $\frac{m}{s^3}$ | $12500.0000 \frac{md}{s^3}$ | 5000.0000 <u>rad</u>      |  |  |

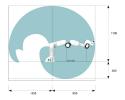
#### Joint space limits are:

| Name                   | Joint 1 | Joint 2 | Joint 3 | Joint 4 | Joint 5 | Joint 6 | Joint 7 | Unit                            |
|------------------------|---------|---------|---------|---------|---------|---------|---------|---------------------------------|
| $q_{max}$              | 2.8973  | 1.7628  | 2.8973  | -0.0698 | 2.8973  | 3.7525  | 2.8973  | rad                             |
| $q_{min}$              | -2.8973 | -1.7628 | -2.8973 | -3.0718 | -2.8973 | -0.0175 | -2.8973 | rad                             |
| $\dot{q}_{max}$        | 2.1750  | 2.1750  | 2.1750  | 2.1750  | 2.6100  | 2.6100  | 2.6100  | $\frac{\text{rad}}{\text{s}}$   |
| $\ddot{q}_{max}$       | 15      | 7.5     | 10      | 12.5    | 15      | 20      | 20      | $\frac{\text{rad}}{\text{s}^2}$ |
| iq <sub>max</sub>      | 7500    | 3750    | 5000    | 6250    | 7500    | 10000   | 10000   | $\frac{rad}{s^3}$               |
| $\tau_{j_{max}}$       | 87      | 87      | 87      | 87      | 12      | 12      | 12      | Nm                              |
| $\dot{\tau}_{j_{max}}$ | 1000    | 1000    | 1000    | 1000    | 1000    | 1000    | 1000    | $\frac{Nm}{8}$                  |



## Illustration with the Franka Emika Panda Robot



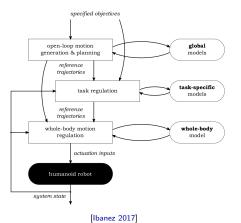


#### $\hookrightarrow$ Curse of "collaborative" robotics

- Safety in the collaboration requires small robots and controlled stops
- Small robots capabilities are small
- Underestimating the capabilities of small robots leads to "not much" capabilities
- Potentially safe robots are mostly useless

## Optimal control vs complex robots (e.g. humanoids)

# For systems making intermittent contacts with the environment (e.g. humanoids walking)...

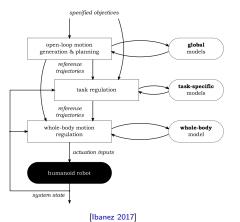


#### ... mostly two solutions

- Sequential simplified planning problem solving from contact sequence to center of mass trajectory under balance constraints and in purely static environment (plan once)
- Stereotypical walking gaits (planned once) on flat grounds and online planar trajectory adaptation
- + Trajectory servoing and multi-task whole-body control

## Optimal control vs complex robots (e.g. humanoids)

# For systems making intermittent contacts with the environment (e.g. humanoids walking)...



#### Difficulties

- ► Planning performed with advanced models is costly → no reactivity
- Simplified models do not account for the true capabilities of the system
- $\hookrightarrow$  underestimation / overstimation  $\rightarrow$  manual tuning
- Humanoids can't do much in real life

## **Outline of the presentation**

#### Introduction

2 Limitations of existing control approaches

#### Real-life examples

#### Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety
- Plan wise, perform wise
- Human understanding as key factor to appropriate robot design and control

#### Open source software

## **Outline of the presentation**

## Introduction

Limitations of existing control approaches

### Real-life examples

#### Some potential solutions

#### • Robot low-level control as an optimisation problem

- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety
- Plan wise, perform wise
- Human understanding as key factor to appropriate robot design and control

#### Open source software

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque  $\tau^*$  optimizing under constraints some objective related task  $v^* = J(q)\nu$ 

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque  $\tau^*$  optimizing under constraints some objective related task  $v^* = J(q)\nu$ 

- Equation of motion and joint space to task space mappings : equalities  $\hookrightarrow$  can be solved using Linear Algebra
  - $\blacktriangleright M(q)\dot{\nu} + b(q,\nu) = S^{T}(q)\tau (+\sum_{i}^{n_{c}} J_{c_{i}}^{T}(q)f_{c_{i}})$
  - $\blacktriangleright \mathbf{v}_i = \mathbf{J}(\mathbf{q})\dot{\mathbf{v}} \quad \forall i \in [1, n_o] \text{ and } \mathbf{v}_i := \dot{\mathbf{H}}_i$

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque  $\tau^*$  optimizing under constraints some objective related task  $v^* = J(q)\nu$ 

- - $\mathbf{M}(\mathbf{q})\boldsymbol{\nu} + \mathbf{b}(\mathbf{q},\boldsymbol{\nu}) = \mathbf{S}^{T}(\mathbf{q})\boldsymbol{\tau} \left( + \sum_{i}^{n_{c}} \mathbf{J}_{c_{i}}^{T}(\mathbf{q})\mathbf{f}_{c_{i}} \right)$
  - $\blacktriangleright \quad \pmb{v}_i = \pmb{J}(\pmb{q}) \dot{\pmb{\nu}} \quad \forall i \in [1, n_o] \text{ and } \pmb{v}_i := \dot{\pmb{H}}_i$
- ► Standard IVK and operational space control approaches<sup>\*</sup>  $\hookrightarrow$  solution based on  $J^+$  and null-space projections  $\dot{\nu} = J^+(q)\nu + (I - J^+J)\dot{\nu}_0$

. \*see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque  $\tau^*$  optimizing under constraints some objective related task  $v^* = J(q)\nu$ 

- - $M(q)\dot{\nu} + b(q,\nu) = S^{T}(q)\tau \left( + \sum_{i}^{n_{c}} J_{c_{i}}^{T}(q)f_{c_{i}} \right)$
  - $\blacktriangleright \ \mathbf{v}_i = \mathbf{J}(\mathbf{q}) \dot{\mathbf{\nu}} \ \forall i \in [1, n_o] \text{ and } \mathbf{v}_i := \dot{\mathbf{H}}_i$
- Standard IVK and operational space control approaches<sup>\*</sup>  $\hookrightarrow$  solution based on  $J^+$  and null-space projections  $\dot{\nu} = J^+(q)\nu + (I - J^+J)\dot{\nu}_0$

$$D(q, \nu) \mathbb{X} \leq h(q, \nu)$$

. \*see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...

In a dynamic environment, performance and safety requires to embed constraints in the low-level control problem : at each control instant, find the actuation torque  $\tau^*$  optimizing under constraints some objective related task  $v^* = J(q)\nu$ 

- - $\mathbf{M}(\mathbf{q})\dot{\mathbf{\nu}} + \mathbf{b}(\mathbf{q},\mathbf{\nu}) = \mathbf{S}^{T}(\mathbf{q})\boldsymbol{\tau} \left( + \sum_{i}^{n_{c}} \mathbf{J}_{c_{i}}^{T}(\mathbf{q})\mathbf{f}_{c_{i}} \right)$   $\mathbf{v}_{i} = \mathbf{J}(\mathbf{q})\dot{\mathbf{\nu}} \quad \forall i \in [1, n_{o}] \text{ and } \mathbf{v}_{i} := \dot{\mathbf{H}}_{i}$
- ► Standard IVK and operational space control approaches<sup>\*</sup>  $\hookrightarrow$  solution based on  $J^+$  and null-space projections  $\dot{\nu} = J^+(q)\nu + (I - J^+J)\dot{\nu}_0$

$$D(q, \nu) \mathbb{X} \leq h(q, \nu)$$

<sup>. \*</sup>see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

#### 3 reasons why Quadratic Programs are better than explicit Jacobian inversions

#### Leave your robot alone

- $\blacktriangleright$  Methods based on  ${\it J}^+$  forces constraints to be treated as tasks  $\rightarrow$  active avoidance
- $\blacktriangleright$  QP allows to consider constraints as such  $\rightarrow$  passive avoidance

#### 3 reasons why Quadratic Programs are better than explicit Jacobian inversions

#### Leave your robot alone

- Methods based on  $J^+$  forces constraints to be treated as tasks  $\rightarrow$  active avoidance
- ▶ QP allows to consider constraints as such  $\rightarrow$  passive avoidance

One constraints than DoFs : choose which one to consider at each time

- Methods based on  $J^+$  use context specific heuristics to do so
- QP comes with an optimal active constraints determination algorithm

#### 3 reasons why Quadratic Programs are better than explicit Jacobian inversions

#### Leave your robot alone

- $\blacktriangleright$  Methods based on  $J^+$  forces constraints to be treated as tasks  $\rightarrow$  active avoidance
- ▶ QP allows to consider constraints as such  $\rightarrow$  passive avoidance

One constraints than DoFs : choose which one to consider at each time

- Methods based on  $J^+$  use context specific heuristics to do so
- QP comes with an optimal active constraints determination algorithm
- Infeasibility can't be ignored
  - $\blacktriangleright$  Methods based on  $\textit{J}^+$  can solve infeasible problems  $\rightarrow$  constraints violation
  - ▶ QP can't be solved if infeasible → deal with this problem first [Rubrecht 2012a, Meguenani 2017b, Del Prete 2018a]

## Constraints compliance as a control feature

For example :

$$\boldsymbol{\tau}_{k+1}^{*} = \underset{\boldsymbol{\tau}_{k+1}, \tilde{\boldsymbol{q}}_{k+1}}{\operatorname{arg\,min}} \left\| \boldsymbol{obj} \left( \ddot{\boldsymbol{q}}_{k+1}, \ddot{\boldsymbol{x}}_{k+1}^{*} \right) \right\|_{\boldsymbol{Q}_{t}}^{2} + \epsilon \left\| \left[ \begin{array}{c} \boldsymbol{\tau}_{k+1} \\ \ddot{\boldsymbol{q}}_{k+1} \end{array} \right] \right\|_{\boldsymbol{Q}_{t}}^{2}$$

such that 
$$\boldsymbol{M}(\boldsymbol{q}_k)\ddot{\boldsymbol{q}}_{k+1} + \boldsymbol{b}(\boldsymbol{q}_k, \dot{\boldsymbol{q}}_k) = \boldsymbol{S}^T(\boldsymbol{q}_k)\boldsymbol{\tau}_{k+1}$$
  
 $\boldsymbol{\tau}_{min} \leq \boldsymbol{\tau}_{k+1} \leq \boldsymbol{\tau}_{max}$   
 $\boldsymbol{q}_{min} \leq \boldsymbol{q}_{k+1} \leq \boldsymbol{q}_{max}$   
 $\dot{\boldsymbol{q}}_{min} \leq \dot{\boldsymbol{q}}_{k+1} \leq \dot{\boldsymbol{q}}_{max}$   
 $0 \leq \boldsymbol{d}_{k+1}^{rob,obj_j} \quad \forall j \in \{1, ..., n_{obj}\}$ 

$$\boldsymbol{obj}\left(\ddot{\boldsymbol{q}}_{k+1}, \ddot{\boldsymbol{x}}_{k+1}^*\right) = \underbrace{\ddot{\boldsymbol{x}}_{k+1}^{des} + PD(\boldsymbol{x}_k, \boldsymbol{x}_{k+1}^{des})}_{\ddot{\boldsymbol{x}}_{k+1}^*} - \boldsymbol{J}(\boldsymbol{q}_k) \dot{\boldsymbol{q}}_{k+1} - \dot{\boldsymbol{J}}(\boldsymbol{q}_k) \dot{\boldsymbol{q}}_k$$

п 112

н г

Constraints compliance as a control feature : the teleoperation case

- PhD thesis Sébastien Rubrecht, ANR TELEMACH, CIFRE Bouygues Construction [Rubrecht 2010, Rubrecht 2011, Rubrecht 2012a]
- <u>Context</u>: Teleoperation in tunnel boring machine cutter-heads
- Static environment, interactive task definition

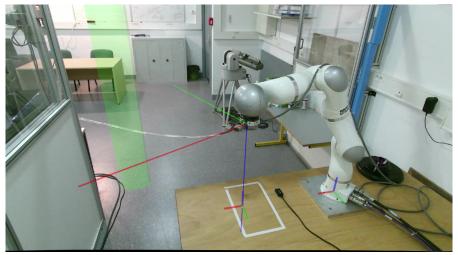




12 / 39

## Constraints compliance as a control feature

- ▶ PhD work of Lucas Joseph, CIFRE GE Healthcare [Joseph 2018c]
- ▶ Dynamic environment : perception in the loop and reactive constraints adaptation



## **Outline of the presentation**

## Introduction

Limitations of existing control approaches

#### Real-life examples

#### Some potential solutions

Robot low-level control as an optimisation problem

#### Redundancy as a key to simple adaptive behaviours

- Energetic approach to safety
- Plan wise, perform wise
- Human understanding as key factor to appropriate robot design and control

#### Open source software

Classically, it's considered to be related to the null-space of the Jacobian  $\dot{\nu} = J^+(q)v + (I - J^+J)\dot{\nu}_0$  or  $\tau = J^T(q)f + (I - J^TJ^{T+})\tau_0$ 

- Classically, it's considered to be related to the null-space of the Jacobian  $\dot{\nu} = J^+(q)v + (l J^+J)\dot{\nu}_0$  or  $\tau = J^T(q)f + (l J^TJ^{T+})\tau_0$
- ▶ In a QP, it does not appear explicitely. Three possibilities :
  - Write the cost function as a weighted sum of individual task constraints [Salini 2011], [Bouyarmane 2011]

$$\tau^* = \underset{\mathbb{X}}{\operatorname{arg\,min}} \qquad T(\mathbb{X}) = \sum_{i=1}^{n_o} T_i(\mathbb{X}, \boldsymbol{W}_i) + w_0 T_0 \qquad (1)$$

subject to 
$$\boldsymbol{M}(\boldsymbol{q})\dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} + \sum_{i=1}^{n_{c}} \boldsymbol{J}_{c_{i}}^{\top}(\boldsymbol{q})\boldsymbol{f}_{c_{i}}$$
 (2)

$$\boldsymbol{A}(\boldsymbol{q},\boldsymbol{\nu})\mathbb{X} = \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) \tag{3}$$

$$\boldsymbol{D}(\boldsymbol{q},\boldsymbol{\nu})\mathbb{X} \leq \boldsymbol{h}(\boldsymbol{q},\boldsymbol{\nu}) \tag{4}$$

- ► Classically, it's considered to be related to the null-space of the Jacobian  $\dot{\nu} = J^+(q)v + (I J^+J)\dot{\nu}_0$  or  $\tau = J^T(q)f + (I J^TJ^{T+})\tau_0$
- ▶ In a QP, it does not appear explicitely. Three possibilities :
  - Write the cost function as a weighted sum of individual task constraints [Salini 2011], [Bouyarmane 2011]



- ► Classically, it's considered to be related to the null-space of the Jacobian  $\dot{\nu} = J^+(q)\nu + (I J^+J)\dot{\nu}_0$  or  $\tau = J^T(q)f + (I J^TJ^{T+})\tau_0$
- ▶ In a QP, it does not appear explicitely. Three possibilities :
  - Write the cost function as a weighted sum of individual task constraints [Salini 2011], [Bouyarmane 2011]

Solve a cascade of  $n_o$  QPs to ensure a strict hierarchy [Kanoun 2009], [Escande 2014]

subject to 
$$\boldsymbol{M}(\boldsymbol{q})\dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) = \boldsymbol{S}^{T}(\boldsymbol{q})\boldsymbol{\tau} + \sum_{i=1}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}}$$
 (2)

$$\boldsymbol{A}(\boldsymbol{q},\boldsymbol{\nu})\mathbb{X} = \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) \tag{3}$$

$$\boldsymbol{D}(\boldsymbol{q},\boldsymbol{\nu})\mathbb{X} \leq \boldsymbol{h}(\boldsymbol{q},\boldsymbol{\nu}) \tag{4}$$

$$T_j(\mathbb{X}) = T_j^* \quad \forall j < i$$
 (5)

- Classically, it's considered to be related to the null-space of the Jacobian  $\dot{\nu} = J^+(q)\nu + (I J^+J)\dot{\nu}_0$  or  $\tau = J^T(q)f + (I J^TJ^{T+})\tau_0$
- In a QP, it does not appear explicitely. Three possibilities :
  - Write the cost function as a weighted sum of individual task constraints [Salini 2011], [Bouyarmane 2011]
  - Solve a cascade of no QPs to ensure a strict hierarchy [Kanoun 2009], [Escande 2014]
  - Solve a QP allowing the formulation and the smooth transition between both soft and strict hierarchy – Generalized Hierarchical Control [Liu 2016]

$$\tau^* = \underset{\tau, f_c, \dot{\nu}'}{\operatorname{arg\,min}} \qquad T(\mathbb{X}) = \sum_{i=1}^{n_o} T_i(\tau, f_c, \dot{\nu}'_i) \qquad (1)$$

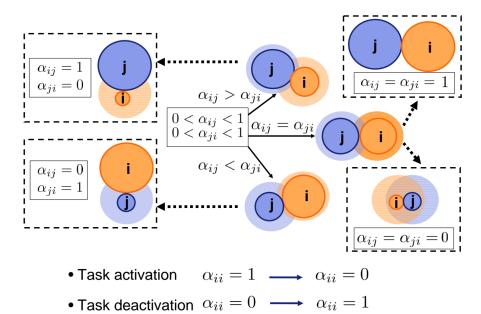
subject to 
$$\boldsymbol{M}(\boldsymbol{q})\boldsymbol{P}\dot{\nu}' + \boldsymbol{b}(\boldsymbol{q},\nu) = \boldsymbol{S}^{T}(\boldsymbol{q})\tau + \sum_{i=1}^{n_{c}} \boldsymbol{J}_{c_{i}}^{T}(\boldsymbol{q})\boldsymbol{f}_{c_{i}}$$
 (2)

$$\boldsymbol{A}(\boldsymbol{q},\boldsymbol{\nu})[\boldsymbol{\tau}^{T},\boldsymbol{f}_{c}^{T},\boldsymbol{P}\dot{\boldsymbol{\nu}}^{\prime T}]^{T} = \boldsymbol{b}(\boldsymbol{q},\boldsymbol{\nu}) \tag{3}$$

$$\boldsymbol{D}(\boldsymbol{q},\boldsymbol{\nu})[\boldsymbol{\tau}^{T},\boldsymbol{f}_{c}^{T},\boldsymbol{P}\dot{\boldsymbol{\nu}}^{\prime T}]^{T} \leq \boldsymbol{h}(\boldsymbol{q},\boldsymbol{\nu}) \tag{4}$$

14 / 39

#### Priorities in Generalized Hierarchical Control [Liu 2016]



/. Padois – 2021/05/10 Int

ntroduction Li

Limitiations

Real-life examples

15 / 39

Redundancy also hides in the regularization task  $T_0$ 

- Redundancy also hides in the regularization task  $T_0$
- $\blacktriangleright$  Often treated by default  $\rightarrow$  converge towards a "good posture"

- Redundancy also hides in the regularization task  $T_0$
- $\blacktriangleright$  Often treated by default  $\rightarrow$  converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase

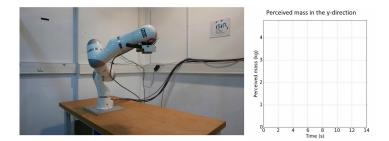
- Redundancy also hides in the regularization task  $T_0$
- $\blacktriangleright$  Often treated by default  $\rightarrow$  converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase
- $\,\hookrightarrow\,$  But they mostly artificially constrain the solution space

16 / 39

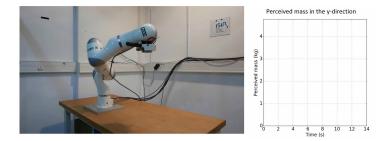
- Redundancy also hides in the regularization task  $T_0$
- $\blacktriangleright$  Often treated by default  $\rightarrow$  converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase
- $\,\hookrightarrow\,$  But they mostly artificially constrain the solution space
- There are some alternatives : gravity compensation, viscous friction, middle of the constraints,...

- Redundancy also hides in the regularization task  $T_0$
- $\blacktriangleright$  Often treated by default  $\rightarrow$  converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase
- $\,\hookrightarrow\,$  But they mostly artificially constrain the solution space
- There are some alternatives : gravity compensation, viscous friction, middle of the constraints,...

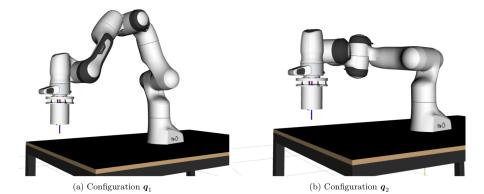
- Redundancy also hides in the regularization task T<sub>0</sub>
- $\blacktriangleright$  Often treated by default  $\rightarrow$  converge towards a "good posture"
- "Good postures" can help convergence of NLP at the planning phase
- $\,\hookrightarrow\,$  But they mostly artificially constrain the solution space
- There are some alternatives : gravity compensation, viscous friction, middle of the constraints,...



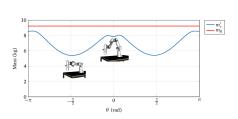
▶ Apparent mass minimization in the potential direction of interaction [Joseph 2018a]

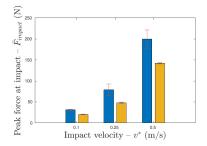


- ► Apparent mass minimization in the potential direction of interaction [Joseph 2018a]
- Makes a significative difference at impact time (H2020 COVR HARRY2 project)



- ▶ Apparent mass minimization in the potential direction of interaction [Joseph 2018a]
- Makes a significative difference at impact time (H2020 COVR HARRY2 project)





(b) Comparison of the averaged maximum peak force at impact time as a function of impact velocity and in two different configurations  $q_1$  (blue) and  $q_2$  (yellow). Standard deviation is plotted as a red whisker.

examples Towards solutions

## **Outline of the presentation**

## Introduction

Limitations of existing control approaches

#### Real-life examples

#### Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety
- Plan wise, perform wise
- Human understanding as key factor to appropriate robot design and control

#### Open source software

#### Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, will \, \operatorname{occur}$

#### Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, will \, \operatorname{occur}$ 
  - ▶ Dissipated Kinetic Energy at impact → source of danger :

$$\int_{u} F_{impact} du = E_{dissipated}$$
$$= E_{c}^{hum} + E_{c}^{rob}$$

Robot Kinetic Energy (expressed at the end-effector) :

$$E_{c,k} = \frac{1}{2} \dot{\boldsymbol{x}}_k^T \boldsymbol{\Lambda}(\boldsymbol{q}_k) \dot{\boldsymbol{x}}_k$$
 with  $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$ 

#### Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, \operatorname{will} \, \operatorname{occur}$
- ▶ Dissipated Kinetic Energy at impact → source of danger :

$$\int_{u} F_{impact} du = E_{dissipated}$$
$$= E_{c}^{hum} + E_{c}^{rob}$$

- Robot Kinetic Energy (expressed at the end-effector) :
  - $E_{c,k} = \frac{1}{2} \dot{\boldsymbol{x}}_k^T \boldsymbol{\Lambda}(\boldsymbol{q}_k) \dot{\boldsymbol{x}}_k$  with  $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$

Future Kinetic Energy :  $E_{c,k+1} = E_{c,k} + \Delta E_c$ 

$$\Delta E_{c} = \underbrace{\left(\dot{\boldsymbol{x}}_{k}\Delta t + 0.5\ddot{\boldsymbol{x}}_{k+1}^{c}(\Delta t)^{2}\right)^{T}}_{\mathbf{F}_{k}} \quad \underbrace{\boldsymbol{\Lambda}(\boldsymbol{q}_{k})\ddot{\boldsymbol{x}}_{k+1}}_{\mathbf{F}_{k}}$$

Expected task motion

Equivalent actuation force

#### Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, \operatorname{will} \, \operatorname{occur}$
- Dissipated Kinetic Energy at impact  $\rightarrow$  source of danger :

$$\int_{u} F_{impact} du = E_{dissipated}$$
$$= E_{c}^{hum} + E_{c}^{rob}$$

- Robot Kinetic Energy (expressed at the end-effector) :
  - $E_{c,k} = \frac{1}{2} \dot{\boldsymbol{x}}_k^T \boldsymbol{\Lambda}(\boldsymbol{q}_k) \dot{\boldsymbol{x}}_k$  with  $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$

► Future Kinetic Energy :  $E_{c,k+1} = E_{c,k} + \Delta E_c$ 

$$\Delta E_{c} = \underbrace{\Delta \mathbf{x}_{k+1}^{\mathsf{T}}}_{\mathbf{M}_{k+1}} \underbrace{\mathbf{\Lambda}(\mathbf{q}_{k})\mathbf{J}(\mathbf{q}_{k})\mathbf{M}^{-1}(\mathbf{q}_{k})(\mathbf{S}^{\mathsf{T}}(\mathbf{q}_{k})\mathbf{\tau}_{k+1} - \mathbf{b}(\mathbf{q}_{k},\boldsymbol{\nu}_{k})) + \dot{\mathbf{J}}(\mathbf{q}_{k})\boldsymbol{\nu}_{k}}_{\mathbf{M}_{k}}$$

Expected task motion

Equivalent actuation force

#### Important observations

- Fixed-based robot can't escape and Human motion and intention is hard to predict
- $\, \hookrightarrow \, \operatorname{Collisions} \, \operatorname{will} \, \operatorname{occur}$
- Dissipated Kinetic Energy at impact  $\rightarrow$  source of danger :

$$\int_{u} F_{impact} du = E_{dissipated}$$
$$= E_{c}^{hum} + E_{c}^{rob}$$

- Robot Kinetic Energy (expressed at the end-effector) :
  - $E_{c,k} = \frac{1}{2} \dot{\boldsymbol{x}}_k^T \boldsymbol{\Lambda}(\boldsymbol{q}_k) \dot{\boldsymbol{x}}_k$  with  $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$

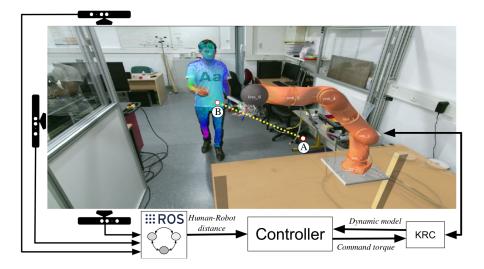
► Future Kinetic Energy :  $E_{c,k+1} = E_{c,k} + \Delta E_c$ 

$$\Delta E_{c} = \underbrace{\Delta \mathbf{x}_{k+1}^{T}}_{\mathbf{F}_{k+1}} \qquad \underbrace{\mathbf{\Lambda}(\mathbf{q}_{k})\mathbf{J}(\mathbf{q}_{k})\mathbf{M}^{-1}(\mathbf{q}_{k})(\mathbf{S}^{T}(\mathbf{q}_{k})\mathbf{\tau}_{k+1} - \mathbf{b}(\mathbf{q}_{k},\boldsymbol{\nu}_{k})) + \dot{\mathbf{J}}(\mathbf{q}_{k})\boldsymbol{\nu}_{k}}_{\mathbf{F}_{k+1}}$$

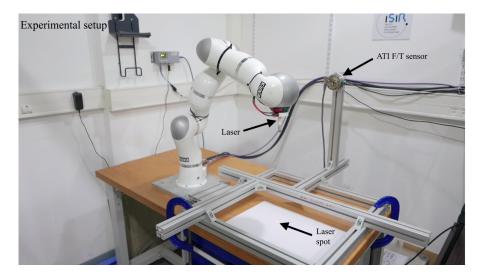
Expected task motion

Equivalent actuation force

▶ We can write a constraint on Kinetic energy at each time [ISO 2016]



#### . [Meguenani 2017a],[Joseph 2018b]



#### . [Meguenani 2017a],[Joseph 2018b]

Introduction

Limitiations

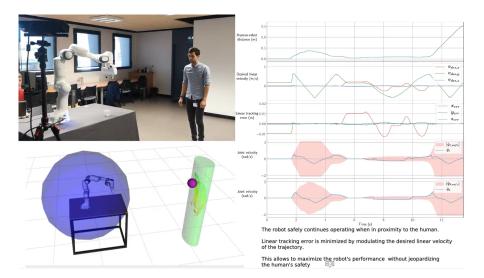
Real-life examples

Towards solutions

lutions Open source so

21 / 39

# Energetic approach to safety [Joseph 2020]



22 / 39

## **Outline of the presentation**

## Introduction

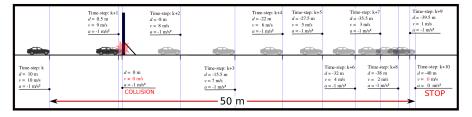
Limitations of existing control approaches

#### Real-life examples

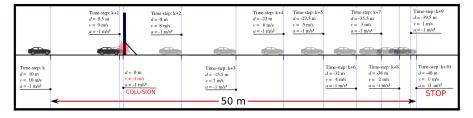
#### Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety
- Plan wise, perform wise
- Human understanding as key factor to appropriate robot design and control

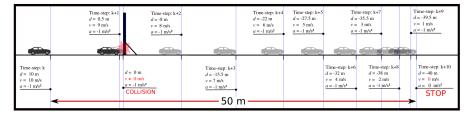
#### Open source software



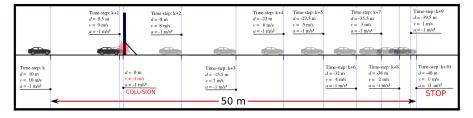
► Existence of a solution to the control problem over an ∞ time horizon? [Fraichard 2004],[Wieber 2008]



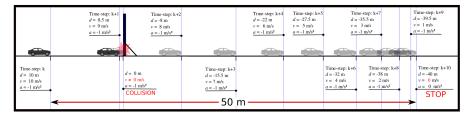
► Modify the constraints expression to ensure compatibility [Rubrecht 2012b]  $q'_{min}(q_k, \nu_k, \dot{\nu}_{min}, \dot{\nu}_{max}) \leq q_{k+1} \leq q'_{max}(q_k, \nu_k, \dot{\nu}_{min}, \dot{\nu}_{max})$ 



- ▶ Modify the constraints expression to ensure compatibility [Rubrecht 2012b]  $q'_{min}(q_k, \nu_k, \dot{\nu}_{min}, \dot{\nu}_{max}) \leq q_{k+1} \leq q'_{max}(q_k, \nu_k, \dot{\nu}_{min}, \dot{\nu}_{max})$
- $\blacktriangleright \text{ Unfortunately } \dot{\boldsymbol{\nu}}_{k+1} = \boldsymbol{M}^{-1}(\boldsymbol{q}_k)(\boldsymbol{S}^{\mathsf{T}}(\boldsymbol{q}_k)\boldsymbol{\tau}_{k+1} \boldsymbol{b}(\boldsymbol{q}_k,\boldsymbol{\nu}_k)) \qquad \rightarrow \dot{\boldsymbol{\nu}}_{\max,k+n} = ?$



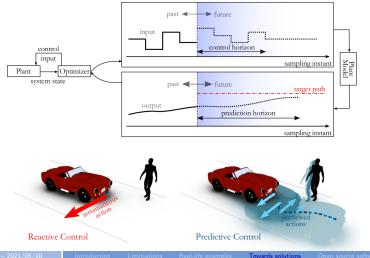
- ► Modify the constraints expression to ensure compatibility [Rubrecht 2012b]  $q'_{min}(q_k, \nu_k, \dot{\nu}_{min}, \dot{\nu}_{max}) \leq q_{k+1} \leq q'_{max}(q_k, \nu_k, \dot{\nu}_{min}, \dot{\nu}_{max})$
- $\blacktriangleright \text{ Unfortunately } \dot{\boldsymbol{\nu}}_{k+1} = \boldsymbol{M}^{-1}(\boldsymbol{q}_k)(\boldsymbol{S}^{\mathsf{T}}(\boldsymbol{q}_k)\boldsymbol{\tau}_{k+1} \boldsymbol{b}(\boldsymbol{q}_k,\boldsymbol{\nu}_k)) \qquad \rightarrow \dot{\boldsymbol{\nu}}_{\max,k+n} =?$
- Look for a minorant of the joint space acceleration capabilities [Meguenani 2017c], [Del Prete 2018b]



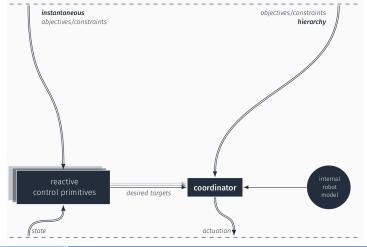
- ► Modify the constraints expression to ensure compatibility [Rubrecht 2012b]  $q'_{min}(q_k, \nu_k, \dot{\nu}_{min}, \dot{\nu}_{max}) \leq q_{k+1} \leq q'_{max}(q_k, \nu_k, \dot{\nu}_{min}, \dot{\nu}_{max})$
- $\blacktriangleright \text{ Unfortunately } \dot{\boldsymbol{\nu}}_{k+1} = \boldsymbol{M}^{-1}(\boldsymbol{q}_k)(\boldsymbol{S}^{\mathsf{T}}(\boldsymbol{q}_k)\boldsymbol{\tau}_{k+1} \boldsymbol{b}(\boldsymbol{q}_k,\boldsymbol{\nu}_k)) \qquad \rightarrow \dot{\boldsymbol{\nu}}_{\max,k+n} = ?$
- Look for a minorant of the joint space acceleration capabilities [Meguenani 2017c], [Del Prete 2018b]
- ► The problem gets even more complex when looking in the task space?  $\ddot{\mathbf{x}}_{k+1} = \mathbf{J}(\mathbf{q}_k)\mathbf{M}^{-1}(\mathbf{q}_k)(\mathbf{S}^{\mathsf{T}}(\mathbf{q}_k)\mathbf{\tau}_{k+1} - \mathbf{b}(\mathbf{q}_k, t\mathbf{\nu}_k)) + \dot{\mathbf{J}}(\mathbf{q}_k)\mathbf{\nu}_k \quad \rightarrow \ddot{\mathbf{x}}_{max,k+n} = ?$

- Global optimality does not exist
- $\hookrightarrow\,$  Try to be optimal given the current state othe world and its close future predicted evolution
- $\, \hookrightarrow \, \, \mathsf{Model} \, \, \mathsf{Predictive} \, \, \mathsf{Control} \,$

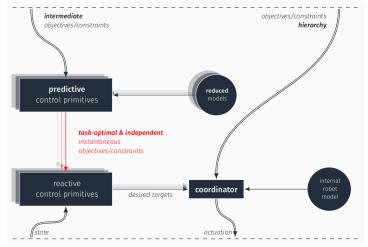
- Global optimality does not exist
- $\hookrightarrow$  Try to be optimal given the current state othe world and its close future predicted evolution
- $\hookrightarrow$  Model Predictive Control



- Global optimality does not exist
- $\hookrightarrow\,$  Try to be optimal given the current state othe world and its close future predicted evolution
- $\, \hookrightarrow \, \, \mathsf{Model} \, \, \mathsf{Predictive} \, \, \mathsf{Control} \,$



- Global optimality does not exist
- $\hookrightarrow\,$  Try to be optimal given the current state othe world and its close future predicted evolution
- $\, \hookrightarrow \, \, \mathsf{Model} \, \, \mathsf{Predictive} \, \, \mathsf{Control} \,$



### Model predictive control widely used for humanoid balance



#### . [Ibanez 2014]

V. Padois - 2021/05/10

Introduction

Limitiation

Real-life example

Towards solutions

tions Open source sof

e 25 / 39

### Tasks compatibility – If you can't do it, don't try the same thing again

### Context

- Funding : UPMC ►
- PhD student : R. Lober
- Co-advisor : O. Sigaud ►
- Topic : Online tasks optimization for whole-body control

### Tasks compatibility - If you can't do it, don't try the same thing again

### Context

- Funding : UPMC
- PhD student : R. Lober
- ▶ <u>Co-advisor :</u> O. Sigaud
- Topic : Online tasks optimization for whole-body control

## Concept

- Whole-Body Control : perform multiple tasks i.e. walking, reaching, posture
- Combining tasks can result in unexpected overall behaviours
- ► Due to :
  - Coarsely planned tasks : model quality vs computation time
  - Perturbations at run time

# Can we incrementally improve the quality of tasks achievement?

V. Padois - 2021/05/10

Introduction L

### Tasks compatibility - If you can't do it, don't try the same thing again

### Context

- Funding : UPMC
- PhD student : R. Lober
- <u>Co-advisor</u>: O. Sigaud
- Topic : Online tasks optimization for whole-body control

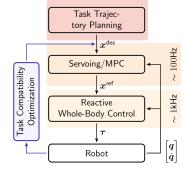
## Concept

- Whole-Body Control : perform multiple tasks i.e. walking, reaching, posture
- Combining tasks can result in unexpected overall behaviours
- Due to :
  - Coarsely planned tasks : model quality vs computation time
  - Perturbations at run time

# Can we incrementally improve the quality of tasks achievement?



Introduction



Tasks compatibility - If you can't do it, don't try the same thing again

Task compatibility optimization, how?

$$\begin{aligned} \boldsymbol{\tau}^* &= \underset{\mathbb{X}}{\arg\min} \quad T\left(\lambda_1, T_1(\mathbb{X}), \lambda_2, T_2(\mathbb{X}), \dots, \lambda_{n_t}, T_{n_t}(\mathbb{X})\right) \\ \text{subject to} \quad \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q}, \boldsymbol{\nu}) &= \boldsymbol{S}(\boldsymbol{q})^T \boldsymbol{\tau} + \sum_{i=1}^{n_c} \boldsymbol{J}_{c_i}^T(\boldsymbol{q}) \boldsymbol{f}_{c_i} \\ \boldsymbol{A}(\boldsymbol{q}, \boldsymbol{\nu}) \mathbb{X} &= \boldsymbol{b}(\boldsymbol{q}, \boldsymbol{\nu}) \\ \boldsymbol{D}(\boldsymbol{q}, \boldsymbol{\nu}) \mathbb{X} \leq \boldsymbol{h}(\boldsymbol{q}, \boldsymbol{\nu}) \end{aligned}$$

Tasks compatibility – If you can't do it, don't try the same thing again

Task compatibility optimization, how?

$$\begin{aligned} \boldsymbol{\tau}^* &= \underset{\mathbb{X}}{\operatorname{arg\,min}} \quad T\left(\lambda_1, T_1(\mathbb{X}), \lambda_2, T_2(\mathbb{X}), \dots, \lambda_{n_t}, T_{n_t}(\mathbb{X})\right) \\ \text{subject to} \quad \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{\nu}} + \boldsymbol{b}(\boldsymbol{q}, \boldsymbol{\nu}) &= \boldsymbol{S}(\boldsymbol{q})^T \boldsymbol{\tau} + \sum_{i=1}^{n_c} \boldsymbol{J}_{c_i}^T(\boldsymbol{q}) \boldsymbol{f}_{c_i} \\ \boldsymbol{A}(\boldsymbol{q}, \boldsymbol{\nu}) \mathbb{X} &= \boldsymbol{b}(\boldsymbol{q}, \boldsymbol{\nu}) \\ \boldsymbol{D}(\boldsymbol{q}, \boldsymbol{\nu}) \mathbb{X} \leq \boldsymbol{h}(\boldsymbol{q}, \boldsymbol{\nu}) \end{aligned}$$

- $\blacktriangleright$  A robot cannot perform incompatible tasks  $\rightarrow$  need for priorities
- Learn or adapt priorities
- ▶ need for priorities → generate compatible tasks !

# Tasks compatibility (1)

### Task compatibility optimization, what variables?

Optimization variables :

- ► Tasks are defined by trajectories :  $T_i = \left\| \mathbf{J}_i(\mathbf{q}) \dot{\boldsymbol{\nu}} + \dot{\mathbf{J}}_i(\mathbf{q}, \boldsymbol{\nu}) \boldsymbol{\nu} - \ddot{\mathbf{x}}^{*\text{ref}}_i \right\|^2$
- Min-jerk trajectories generated from waypoints
- $\hookrightarrow$  Optimize the  $n_{\lambda}$  waypoints :  $\lambda_i = [x \ y \ z]_i^T$



## Tasks compatibility (2)

#### Task compatibility optimization, what do we optimize?

#### Cost function :

► Tracking Cost :  $j_t^i = \sum_{t=0.0}^{t_{end}} \| \mathbf{x}_i^*(t) - \mathbf{x}_i^{*ref}(t) \|^2$ 

• Goal Cost : 
$$j_g^i = \sum_{t=0.0}^{r_{end}} \frac{t}{d_{\Lambda}} \| \boldsymbol{x}_i^*(t) - \boldsymbol{\lambda}_n \|^2$$

• Energy cost : 
$$j_e = \beta \sum_{t=0.0}^{l_{end}} \|\boldsymbol{\tau}(t)\|^2$$

► Total cost :  $j_c = \left[ j_e + \sum_{i=1}^{n_{\text{tasks}}} \left( j_t^i + j_g^i \right) \right] / t_{\text{end}}$ 



# Tasks compatibility (3)

#### Task compatibility optimization, Experiments

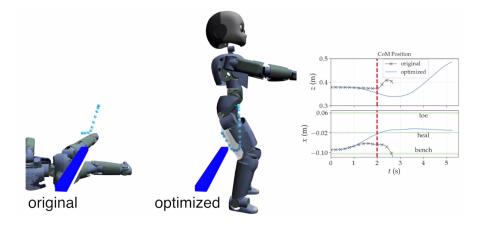
Scenarios :

- Reaching movements under bipedal equilibrium (constant CoM reference position)
- Seat to stand under bipedal equilibrium (dynamic CoM reference position)
- Optimized waypoint(s) : middle waypoint of the CoM reference trajectory



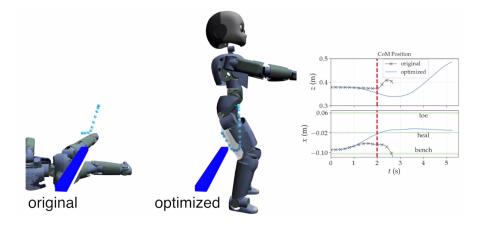
# Tasks compatibility (4)

#### Task compatibility optimization, Results [Lober 2016], [Lober 2020]



### **Tasks compatibility**

#### Task compatibility optimization, Results [Lober 2016], [Lober 2020]



### The key ingredient to planning and model predictive control is ...

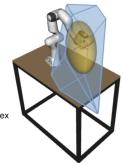
- ... a very good estimation of your motor capabilities in task space
- Complex : state dependant, polytopes
- $\,\hookrightarrow\,$  MPC based motion replanning with state dependant robot capabilities
- PhD of Nicolas Torres (Cifre PSA) and Antun Skuric (Lichie Airbus) [Skuric 2021] [Pickard 2021]



- standard approach
- robot design
- trajectory planning
- efficient calculation
- not accurate

#### - Force polytopes

- exact solution
- accurate
- vertex finding complex



### **Outline of the presentation**

### Introduction

Limitations of existing control approaches

#### Real-life examples

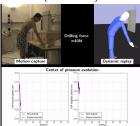
#### Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety
- Plan wise, perform wise
- Human understanding as key factor to appropriate robot design and control

#### Open source software

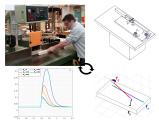
### Virtual human models

#### Virtual Human as a virtual sensor

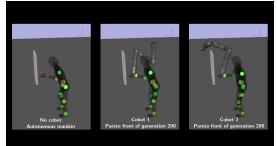


[Maurice 2017]

#### Task and expertise analysis [Benhabib 2020]



#### Optimal synthesis of robots (design) [Maurice 2015]



34 / 39

## Optimal synthesis of robots (control) – The Woobot project example

#### PhD Thesis Nassim Benhabib (2018-) in collaboration with CFA BTP [Benhabib 2020]



#### Context

 Securing a dangerous industrial task involving a strong tool-operator interaction

Keeping human know-how

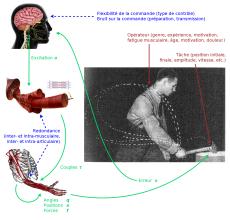
Milling wood chosen as an exemplary task

#### Methodology

 Developing a simulator that describes the wrenches exchanged between the craftsman and the tool

- Deducing potentially injurious cases
- Propose a cobotic assistance

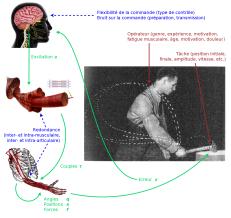




Large variability in the performing of a given movement

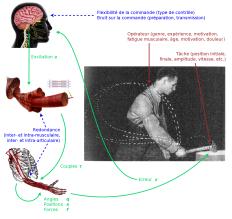
[Gaudez 2016], [Savin 2017], [Savin 2019]

V. Padois – 2021/05/10



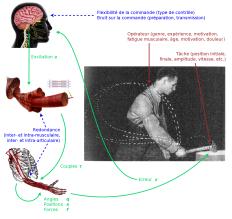
- Large variability in the performing of a given movement
  - "The" optimal movement does not exist (or is not advised)

[Gaudez 2016], [Savin 2017], [Savin 2019]



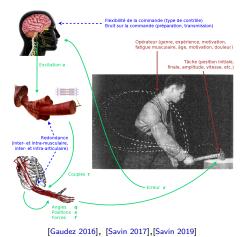
[Gaudez 2016], [Savin 2017], [Savin 2019]

- Large variability in the performing of a given movement
- "The" optimal movement does not exist (or is not advised)
- Importance of variability in motor strategy
  - Delays the appearance of fatigue [Srinivasan 2012]
  - Positive factor to avoid MSD



[Gaudez 2016], [Savin 2017], [Savin 2019]

- Large variability in the performing of a given movement
- "The" optimal movement does not exist (or is not advised)
- Importance of variability in motor strategy
  - Delays the appearance of fatigue [Srinivasan 2012]
  - Positive factor to avoid MSD
- Explore the link between motor variability and expertise



- Large variability in the performing of a given movement
  - "The" optimal movement does not exist (or is not advised)
  - Importance of variability in motor strategy
    - Delays the appearance of fatigue [Srinivasan 2012]
    - Positive factor to avoid MSD
  - Explore the link between motor variability and expertise
  - PhD thesis of Raphaël Bousigues (2020 –) with INRS and Larsen@Inria

Towards solutions

### **Outline of the presentation**

#### Introduction

2 Limitations of existing control approaches

Real-life examples

#### Some potential solutions

- Robot low-level control as an optimisation problem
- Redundancy as a key to simple adaptive behaviours
- Energetic approach to safety
- Plan wise, perform wise
- Human understanding as key factor to appropriate robot design and control

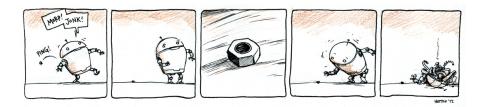
#### Open source software

### Some available and functionnal software

#### ► QP :

- torque\_qp : https://gitlab.inria.fr/auctus/panda/velocity\_qp
- velocity\_qp : https://gitlab.inria.fr/auctus/panda/torque\_qp
- RTT\_panda : https://gitlab.inria.fr/auctus/panda/rtt\_panda/
- Orca: https://orca-controller.readthedocs.io
- Robot capabilities computation :
  - polytope\_vertex\_search :
     https://gitlab.inria.fr/askuric/polytope\_vertex\_search
     ...
- Utilities (not yet shared) :
  - 2D laser ROS driver
  - ► 6-axis FT sensor driver
  - ▶ ..

- Thank you for your attention -



#### References

Nassim Benhabib, Vincent Padois and David Daney, Securing industrial operators with collaborative

robots : simulation and experimental validation for a

In In proceedings of the IEEE International Conference on Robotics and Automation., Paris,

Using a multi-objective controller to synthesize simulated humanoid robot motion with changing

#### contact configurations.

Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators

Joint Position and Velocity Bounds in Discrete-Time Acceleration/Torque Control of Robot Manipulators.

#### Andrea Del Prete

Joint Position and Velocity Bounds in Discrete-Time Acceleration/Torque Control of Robot Manipulators. IEEE Robotics and Automation Letters, vol. 3, no. 1,

Adrien Escande, Nicolas Mansard and Pierre-Brice

Hierarchical guadratic programming : Fast online humanoid-robot motion generation

Prioritized multi-task motion control of redundant robots under hard joint constraints.

Inevitable collision states - a step towards safer

#### Intrinsic movement variability at work. How long is the path from motor control to design engineering?

A. Ibanez, P. Bidaud and V. Padois, Emergence of humanoid walking behaviors from

mixed-integer model predictive control.

#### A. Ibanez, P. Bidaud and V. Padols, Optimization-based control approaches to humanoid balancing.

In Ambarish Goswami and Prahlad Vadakkepat.

ISO TS-15066, Robots and robotic devices -Collaborative robots, 2016.

Experimental validation of an energy constraint for a safer collaboration with robots.

L. Joseph, V. Padois and G. Morel, Towards X-ray medical imaging with robots in the

open : safety without compromising performances

An energetic approach to safety in robotic manipulation.

#### Lucas Joseph, Joshua Pickard, Vincent Padois and Online velocity constraint adaptation for safe and

efficient human-robot workspace sharing

Oussama Kanoun, Florent Lamiraux, Pierre-Brice Prioritizing linear equality and inequality systems : application to local motion planning for redundant

In Proceedings of the IEEE International Conference

A unified approach for motion and force control of

robot manipulators : The operational space

#### Automatic Supervisory Control of the Configuration

and Cybernetics

M. Liu, Y. Tan and V. Padols.

#### Efficient Reinforcement Learning for Humanoid

In Proceedings of the IEEE-RAS International

R. Lober, O. Sigaud and V. Padois. Task Feasibility Maximization using Model-Free Policy Search and Model-Based Whole-Body Control

#### A Unified Approach to Integrate Unilateral

Constraints in the Stack of Tasks.

Virtual ergonomics for the design of collaborative robots.

Human-oriented design of collaborative robots.

#### Energy-based control for safe Human-robot physical

In D. Kulic, G. Venture, Y. Nakamura and O. Khatib.

Safe control of robotic manipulators in dynamic contexts.

#### Anis Meguenani. Safe control of robotic manipulators in dynamic

Efficient Set-Based Approaches for the Computation of Robot Capabilities.

#### S. Rubrecht, V. Padois, P. Bidaud and M. de Broissia

#### Constraint Compliant Control for a Redundant Manipulator in a Cluttered Environment.

Contributions to the control of constrained robots

#### Motion safety and constraints compatibility for

#### multibody robots.

#### Motion safety and constraints compatibility for

#### multibody robots.

#### J. Salini, V. Padois and P. Bidaud

#### Synthesis of Complex Humanoid Whole-Body Behavior : a Focus on Sequencing and Tasks

#### Transitions.

In Proceedings of the IEEE International Conference

Movement Variability and Digital Human Models Development of a Demonstrator Taking the Effects o

#### Muscular Fatigue into Account.

performance.

Simulation de la variabilité du mouvement induite par la fatigue musculaire pour la conception ergonomique de postes de travail.

#### B. Siciliano and J.-J.E. Slotine.

A general framework for managing multiple tasks in highly redundant robotic systems.

#### Antun Skuric, Vincent Padois and David Daney On-line force capability evaluation based on efficient polytope vertex search.

In Submitted for publication at the 2021 IEEE

#### Motor variability in occupational health and

Viability and predictive control for safe locomotion

Open source software

30 / 30