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Interactive robots do not exist for real

Real-world ...

Basic locomotion and manipulation skills

Advanced locomotion skills

Cognitive and physical interactions
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Interactive robots do not exist for real

... vs Laboratory science and technology

Advanced control but no living bodies around

How many (trully) collaborative robots have you seen in the
industry ?

Why is it so ?
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The world is dynamic, complex and hard to predict (impact in 6s)
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Outline of the presentation

1 Introduction

2 Limitations of existing control approaches

3 Real-life examples

4 Some potential solutions
Robot low-level control as an optimisation problem
Redundancy as a key to simple adaptive behaviours
Energetic approach to safety
Plan wise, perform wise
Human understanding as key factor to appropriate robot design and control

5 Open source software
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(Reactive) Optimal control

Ideally, solve reactively ...

min
t0,tf ,x(t),u(t)

Jb(t0, tf , x(t0), x(tf ))︸ ︷︷ ︸
boundary objective function

+
∫ tf

t0

Ji (s, x(s), u(s))ds︸ ︷︷ ︸
integral objective function

subject to :
I Dynamics : ẋ(t) = f (t, x(t), u(t))
I Path constraints : h(t, x(t), u(t)) ≤ 0
I State constraints : x l (t) ≤ x(t) ≤ xu(t)
I Control bounds : u l (t) ≤ u(t) ≤ uu(t)

... but in practice
I infinite dimensional problem
I can generally not be solved, even once
↪→ transformed in a finite dimensional problem : non linear

program / constrained parameter optimization
↪→ hard to solve, cannot be solved reactively
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Looking closer

In dynamic environments, x(t) = {x rob(t), xenv (t)}
↪→ requires perception for the state of the environment xenv (t)
↪→ no control over xenv (t) → reactive planning needed

↪→ compute an optimal control input trajectory τ (t) at each control instant given
I Control objectives : {H1,f , . . . ,Hno ,f }
I (Non-linear) Dynamics of the system :

I M(q)ν̇ + b(q, ν) = ST (q)τ (+
∑nc

i JT
ci (q)f ci )

I v i = J(q)ν̇ ∀i ∈ [1, no ] and v i := Ḣ i
I Constraints :

I τ l ≤ τ ≤ τ u
I τ̇ l ≤ τ̇ ≤ τ̇ u
I q l ≤ q ≤ qu
I ν̇ l ≤ ν̇ ≤ ν̇u
I h(xenv , q) ≤ 0
I ...

↪→ very complex and computationnally demanding control / optimization problem
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Optimal control vs real-life

Historically in the industry, the problem left to robots is simplified
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Optimal control vs real-life

Static environment → reactivity not required at the task planning level ...

... as constraints are met
I offline, through planning
I a posteriori through emergency stops or

stereotypical safety zones definition

Yet finding a control trajectory is complex
↪→ Decouple planning and control
I Plan for q(t) or H(t)
I Perform trajectory servoing and low

level-control
Still too complex !
I Simplification based on an underestimation of

the true robot capacities
↪→ the industry is full of oversized and dangerous

robots
I Highly expert manual tuning required
↪→ robots are not the promised versatile tools
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Illustration with the Franka Emika Panda Robot

V. Padois – 2021/05/10 Introduction Limitiations Real-life examples Towards solutions Open source software 7 / 39



Illustration with the Franka Emika Panda Robot

↪→ Curse of "collaborative" robotics
I Safety in the collaboration requires small robots and controlled stops
I Small robots capabilities are small
I Underestimating the capabilities of small robots leads to "not much" capabilities
I Potentially safe robots are mostly useless
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Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids
walking)...

[Ibanez 2017]

... mostly two solutions
I Sequential simplified planning problem

solving from contact sequence to
center of mass trajectory under
balance constraints and in purely
static environment (plan once)

I Stereotypical walking gaits (planned
once) on flat grounds and online
planar trajectory adaptation

+ Trajectory servoing and multi-task
whole-body control
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Optimal control vs complex robots (e.g. humanoids)

For systems making intermittent contacts with the environment (e.g. humanoids
walking)...

[Ibanez 2017]

Difficulties
I Planning performed with advanced

models is costly → no reactivity
I Simplified models do not account for

the true capabilities of the system
↪→ underestimation / overstimation →

manual tuning
I Humanoids can’t do much in real life
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Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
τ ∗ optimizing under constraints some objective related task v∗ = J(q)ν

I Equation of motion and joint space to task space mappings : equalities
↪→ can be solved using Linear Algebra
I M(q)ν̇ + b(q, ν) = ST (q)τ (+

∑nc
i JT

ci (q)f ci )
I v i = J(q)ν̇ ∀i ∈ [1, no ] and v i := Ḣ i

I Standard IVK and operational space control approaches∗
↪→ solution based on J+ and null-space projections ν̇ = J+(q)v + (I − J+J)ν̇0

I Some limits on the system cannot or should never be crossed : inequalities
↪→ cannot be accounted for properly using Linear Algebra only

D(q,ν)X ≤ h(q,ν)

I These constraints are linear wrt control variables : convex solution space
↪→ convex optimization (LQP) is a powerful tool to solve optimally the reactive
control problem.
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I Standard IVK and operational space control approaches∗
↪→ solution based on J+ and null-space projections ν̇ = J+(q)v + (I − J+J)ν̇0

I Some limits on the system cannot or should never be crossed : inequalities
↪→ cannot be accounted for properly using Linear Algebra only

D(q,ν)X ≤ h(q,ν)

I These constraints are linear wrt control variables : convex solution space
↪→ convex optimization (LQP) is a powerful tool to solve optimally the reactive
control problem.

. ∗see the work of [Liégeois 1977], [Khatib 1987], [Siciliano 1991], [Chiaverini 1997], [Mansard 2009], [Flacco 2012],...
V. Padois – 2021/05/10 Introduction Limitiations Real-life examples Towards solutions Open source software 9 / 39



Robot low-level control as an optimisation problem

In a dynamic environment, performance and safety requires to embed constraints
in the low-level control problem : at each control instant, find the actuation torque
τ ∗ optimizing under constraints some objective related task v∗ = J(q)ν

I Equation of motion and joint space to task space mappings : equalities
↪→ can be solved using Linear Algebra
I M(q)ν̇ + b(q, ν) = ST (q)τ (+

∑nc
i JT

ci (q)f ci )
I v i = J(q)ν̇ ∀i ∈ [1, no ] and v i := Ḣ i
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Robot low-level control as an optimisation problem

3 reasons why Quadratic Programs are better than explicit Jacobian inversions

1 Leave your robot alone
I Methods based on J+ forces constraints to be treated as tasks → active avoidance
I QP allows to consider constraints as such → passive avoidance

2 More constraints than DoFs : choose which one to consider at each time
I Methods based on J+ use context specific heuristics to do so
I QP comes with an optimal active constraints determination algorithm

3 Infeasibilty can’t be ignored
I Methods based on J+ can solve infeasible problems → constraints violation
I QP can’t be solved if infeasible → deal with this problem first

[Rubrecht 2012a, Meguenani 2017b, Del Prete 2018a]
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Constraints compliance as a control feature

For example :
τ k+1

∗ = arg min
τ k+1,q̈k+1

∥∥obj
(
q̈k+1, ẍ

∗
k+1
)∥∥2

Qt
+ ε

∥∥∥∥[ τ k+1
q̈k+1

]∥∥∥∥2
Qr

such that M(qk )q̈k+1 + b(qk , q̇k ) = ST (qk )τ k+1

τ min ≤ τ k+1 ≤ τ max

qmin ≤ qk+1 ≤ qmax

q̇min ≤ q̇k+1 ≤ q̇max

0 ≤ d rob,objj
k+1 ∀j ∈ {1, ..., nobj}

obj
(
q̈k+1, ẍ

∗
k+1
)

= ẍdes
k+1 + PD(xk , xdes

k+1)︸ ︷︷ ︸
ẍ∗k+1

−J(qk )q̈k+1 − J̇(qk )q̇k
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Constraints compliance as a control feature : the teleoperation case

I PhD thesis Sébastien Rubrecht, ANR TELEMACH, CIFRE Bouygues
Construction [Rubrecht 2010, Rubrecht 2011, Rubrecht 2012a]

I Context : Teleoperation in tunnel boring machine cutter-heads
I Static environment, interactive task definition
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Constraints compliance as a control feature

I PhD work of Lucas Joseph, CIFRE GE Healthcare [Joseph 2018c]

I Dynamic environment : perception in the loop and reactive constraints adaptation
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Where is redundancy hiding ?

I Classically, it’s considered to be related to the null-space of the Jacobian
ν̇ = J+(q)v + (I − J+J)ν̇0 or τ = JT (q)f + (I − JT JT +)τ 0

I In a QP, it does not appear explicitely. Three possibilities :

1 Write the cost function as a weighted sum of individual task constraints
[Salini 2011],[Bouyarmane 2011]

2 Solve a cascade of no QPs to ensure a strict hierarchy [Kanoun 2009], [Escande 2014]

3 Solve a QP allowing the formulation and the smooth transition between both soft
and strict hierarchy – Generalized Hierarchical Control [Liu 2016]

τ∗ = arg min
τ ,f c ,ν̇′

T (X) =
∑no

i=1 Ti (τ , f c , ν̇′i ) (1)

subject to M(q)Pν̇′ + b(q, ν) = ST (q)τ +
∑nc

i=1 J>ci (q)f ci (2)

A(q, ν)[τ T , f T
c , Pν̇′T ]T = b(q, ν) (3)

D(q, ν)[τ T , f T
c , Pν̇′T ]T ≤ h(q, ν) (4)
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Priorities in Generalized Hierarchical Control [Liu 2016]
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Redundancy as a key to simple adaptive behaviours

I Redundancy also hides in the regularization task T0

I Often treated by default → converge towards a "good posture"
I "Good postures" can help convergence of NLP at the planning phase
↪→ But they mostly artificially constrain the solution space
I There are some alternatives : gravity compensation, viscous friction, middle of the

constraints,...
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Redundancy as a key to simple adaptive behaviours

I Apparent mass minimization in the potential direction of interaction [Joseph 2018a]
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Outline of the presentation

1 Introduction

2 Limitations of existing control approaches

3 Real-life examples

4 Some potential solutions
Robot low-level control as an optimisation problem
Redundancy as a key to simple adaptive behaviours
Energetic approach to safety
Plan wise, perform wise
Human understanding as key factor to appropriate robot design and control

5 Open source software
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Energetic approach to safety

Important observations
I Fixed-based robot can’t escape and Human motion and intention is hard to predict
↪→ Collisions will occur

I Dissipated Kinetic Energy at impact → source of danger :∫
u

Fimpactdu = Edissipated

= E hum
c + E rob

c

I Robot Kinetic Energy (expressed at the end-effector) :

Ec,k = 1
2 ẋT

k Λ(qk )ẋk with Λ(q) = (J(q)M−1(q)JT (q))−1

I Future Kinetic Energy : Ec,k+1 = Ec,k + ∆Ec

I We can write a constraint on Kinetic energy at each time [ISO 2016]
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Energetic approach to safety

. [Meguenani 2017a],[Joseph 2018b]
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Energetic approach to safety [Joseph 2020]
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Viability – Do not plan to do what you cannot do.

I Existence of a solution to the control problem over an ∞ time horizon ?
[Fraichard 2004],[Wieber 2008]

I Modify the constraints expression to ensure compatibility [Rubrecht 2012b]

q′min(qk ,νk , ν̇min, ν̇max ) ≤ qk+1 ≤ q′max (qk ,νk , ν̇min, ν̇max )

I Unfortunately ν̇k+1 = M−1(qk )(ST (qk )τ k+1 − b(qk ,νk )) → ν̇max,k+n =?

I Look for a minorant of the joint space acceleration capabilities
[Meguenani 2017c], [Del Prete 2018b]

I The problem gets even more complex when looking in the task space ?
ẍk+1 = J(qk )M−1(qk )(ST (qk )τ k+1 − b(qk , tνk )) + J̇(qk )νk → ẍmax,k+n =?
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Model Predictive Control

I Global optimality does not exist
↪→ Try to be optimal given the current state othe world and its close future predicted

evolution
↪→ Model Predictive Control
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Model predictive control widely used for humanoid balance

. [Ibanez 2014]
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Tasks compatibility – If you can’t do it, don’t try the same thing again

Context
I Funding : UPMC
I PhD student : R. Lober
I Co-advisor : O. Sigaud
I Topic : Online tasks optimization for

whole-body control

Concept
I Whole-Body Control : perform multiple tasks

i.e. walking, reaching, posture

I Combining tasks can result in unexpected
overall behaviours

I Due to :
I Coarsely planned tasks : model quality vs

computation time

I Perturbations at run time

Can we incrementally improve the quality of
tasks achievement ?
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Tasks compatibility – If you can’t do it, don’t try the same thing again

Task compatibility optimization, how ?

τ ∗ = arg min
X

T (λ1,T1(X), λ2,T2(X), . . . , λnt ,Tnt (X))

subject to M(q)ν̇ + b(q,ν) = S(q)T τ +
∑nc

i=1 JT
ci (q)fci

A(q,ν)X = b(q,ν)
D(q,ν)X ≤ h(q,ν)

I A robot cannot perform incompatible tasks → need for priorities
I Learn or adapt priorities
I (((((((

need for priorities → generate compatible tasks !
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Tasks compatibility (1)

Task compatibility optimization, what variables ?

Optimization variables :
I Tasks are defined by trajectories :

Ti =
∥∥J i (q)ν̇ + J̇ i (q,ν)ν − ẍ∗refi

∥∥2
I Min-jerk trajectories generated from

waypoints

↪→ Optimize the nλ waypoints : λi = [x y z]T
i
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Tasks compatibility (2)

Task compatibility optimization, what do we optimize ?

Cost function :
I Tracking Cost :

j i
t =

tend∑
t=0.0

‖x∗i (t)− x∗i ref(t)‖2

I Goal Cost : j i
g =

tend∑
t=0.0

t
dΛ
‖x∗i (t)− λn‖2

I Energy cost : je = β

tend∑
t=0.0

‖τ (t)‖2

I Total cost :

jc =

[
je +

ntasks∑
i=1

(
j i
t + j i

g
)]/

tend
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Tasks compatibility (3)

Task compatibility optimization, Experiments

Scenarios :
I Reaching movements under bipedal

equilibrium (constant CoM reference
position)

I Seat to stand under bipedal equilibrium
(dynamic CoM reference position)

I Optimized waypoint(s) : middle waypoint
of the CoM reference trajectory
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Tasks compatibility (4)

Task compatibility optimization, Results [Lober 2016],[Lober 2020]
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Tasks compatibility

Task compatibility optimization, Results [Lober 2016],[Lober 2020]
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The key ingredient to planning and model predictive control is ...

I ... a very good estimation of your motor capabilities in task space
I Complex : state dependant, polytopes
↪→ MPC based motion replanning with state dependant robot capabilities
I PhD of Nicolas Torres (Cifre PSA) and Antun Skuric (Lichie Airbus)

[Skuric 2021] [Pickard 2021]
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Virtual human models
Virtual Human as a virtual sensor

[Maurice 2017]
Task and expertise analysis [Benhabib 2020]

Optimal synthesis of robots (design) [Maurice 2015]
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Optimal synthesis of robots (control) – The Woobot project example

PhD Thesis Nassim Benhabib (2018–) in collaboration with CFA BTP [Benhabib 2020]
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Motor variability

[Gaudez 2016], [Savin 2017],[Savin 2019]

I Large variability in the performing of a
given movement

I "The" optimal movement does not
exist (or is not advised)

I Importance of variability in motor
strategy
I Delays the appearance of fatigue

[Srinivasan 2012]
I Positive factor to avoid MSD

I Explore the link between motor
variability and expertise

I PhD thesis of Raphaël Bousigues
(2020 –) with INRS and Larsen@Inria
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Outline of the presentation

1 Introduction

2 Limitations of existing control approaches

3 Real-life examples

4 Some potential solutions
Robot low-level control as an optimisation problem
Redundancy as a key to simple adaptive behaviours
Energetic approach to safety
Plan wise, perform wise
Human understanding as key factor to appropriate robot design and control

5 Open source software
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Some available and functionnal software

I QP :
I torque_qp : https://gitlab.inria.fr/auctus/panda/velocity_qp
I velocity_qp : https://gitlab.inria.fr/auctus/panda/torque_qp
I RTT_panda : https://gitlab.inria.fr/auctus/panda/rtt_panda/
I Orca : https://orca-controller.readthedocs.io

I Robot capabilities computation :
I polytope_vertex_search :

https://gitlab.inria.fr/askuric/polytope_vertex_search
I ...

I Utilities (not yet shared) :
I 2D laser ROS driver
I 6-axis FT sensor driver
I ...
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– Thank you for your attention –
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